Skip to main content

Probing the Function of Oncohistones Using Mutant Transgenes and Knock-In Mutations

  • Protocol
  • First Online:
Histone Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1832))

Abstract

Recently, frequent somatic mutations at histone genes have been detected in high grade pediatric brain tumor, chondroblastoma, and giant cell tumor of bone. These mutant histones are also termed oncohistones. Since oncohistone proteins co-exist with wild type histone proteins in cells, it is critically important to understand how they promote tumorigenesis. Here, we describe two methods to analyze the impact of these oncohistones on histone modification and epigenome, including the expression of oncohistone from a transgene and the utilization of CRISPR/Cas9 system to knock-in specific oncohistone mutations. The methods described are useful for the initial characterization of oncohistones. Other methods such as ChIP-seq and RNA-seq, which analyze the effect of oncohistone mutations genome wide, are not detailed in this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Bentley GA, Lewitbentley A, Finch JT et al (1984) Crystal-structure of the nucleosome Core particle at 16 a resolution. J Mol Biol 176:55–75

    Article  CAS  PubMed  Google Scholar 

  2. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  3. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  CAS  PubMed  Google Scholar 

  4. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    Article  CAS  PubMed  Google Scholar 

  5. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46:462–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Behjati S, Tarpey PS, Presneau N et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45:1479–1482

    Article  CAS  PubMed  Google Scholar 

  9. Nikbakht H, Panditharatna E, Mikael LG et al (2016) Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 7:11185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Castel D, Philippe C, Calmon R et al (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Solomon DA, Wood MD, Tihan T et al (2016) Diffuse midline Gliomas with histone H3-K27M mutation: a series of 47 cases assessing the Spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  CAS  PubMed  Google Scholar 

  12. Lan F, Shi Y (2015) Histone H3.3 and cancer: a potential reader connection. Proc Natl Acad Sci U S A 112:6814–6819

    Article  CAS  PubMed  Google Scholar 

  13. Liu X, McEachron TA, Schwartzentruber J, Wu G (2014) Histone H3 mutations in pediatric brain tumors. Cold Spring Harb Perspect Biol 6:a018689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gessi M, Gielen GH, Hammes J et al (2013) H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neuro-Oncol 112:67–72

    Article  CAS  Google Scholar 

  15. Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 14:651–661

    Google Scholar 

  16. Bjerke L, Mackay A, Nandhabalan M et al (2013) Histone H3.3. Mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3:512–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Presneau N, Baumhoer D, Behjati S et al (2015) Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res 1:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amary F, Berisha F, Ye H et al (2017) H3F3A (histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant Giant cell tumor of bone. Am J Surg Pathol 41:1059–1068

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee JC, Liang CW, Fletcher CD (2017) Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Mod Pathol 30:728–733

    Article  CAS  PubMed  Google Scholar 

  20. Koelsche C, Schrimpf D, Tharun L et al (2017) Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin Sarcoma Res 7:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kallappagoudar S, Yadav RK, Lowe BR et al (2015) Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 124:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amary MF, Berisha F, Mozela R et al (2016) The H3F3 K36M mutant antibody is a sensitive and specific marker for the diagnosis of chondroblastoma. Histopathology 69:121–127

    Article  PubMed  Google Scholar 

  23. Fontebasso AM, Gayden T, Nikbakht H et al (2014) Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathol 128:615–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Papillon-Cavanagh S, Lu C, Gayden T et al (2017) Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet 49:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan KM, Fang D, Gan H et al (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric Glioblastoma. Science 340:857–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bender S, Tang Y, Lindroth AM et al (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672

    Article  CAS  PubMed  Google Scholar 

  28. Fang D, Gan H, Lee JH et al (2016) The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 352:1344–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu C, Jain SU, Hoelper D et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohammad F, Weissmann S, Leblanc B et al (2017) EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med 23:483–492

    Article  CAS  PubMed  Google Scholar 

  31. Piunti A, Hashizume R, Morgan MA et al (2017) Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang D, Gan H, Wang H et al (2017) Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells. Cell Cycle 16(19):1781–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan KM, Han J, Fang D et al (2013) A lesson learned from the H3.3K27M mutation found in pediatric glioma: a new approach to the study of the function of histone modifications in vivo? Cell Cycle 12:2546–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herz HM, Morgan M, Gao X et al (2014) Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling. Science 345:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Funato K, Major T, Lewis PW et al (2014) Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346:1529–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fang, D., Wang, H., Zhang, Z. (2018). Probing the Function of Oncohistones Using Mutant Transgenes and Knock-In Mutations. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics