Skip to main content

Studying the Evolution of Histone Variants Using Phylogeny

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1832))

Abstract

Histones wrap DNA to form nucleosomes that package eukaryotic genomes. Histone variants have evolved for diverse functions including gene expression, DNA repair, epigenetic silencing, and chromosome segregation. With the rapid increase of newly sequenced genomes the repertoire of histone variants expands, demonstrating a great diversification of these proteins across eukaryotes. In this chapter, we are providing guidelines for the computational characterization and annotation of histone variants. We describe methods to predict the characteristic histone fold domain and list features specific to known histone variants that can be used to categorize newly identified histone fold proteins. We continue describing procedures to retrieve additional related histone variants for comparative sequence analyses and phylogenetic reconstructions to refine the annotation and to determine the evolutionary trajectories of the variant in question.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Article  CAS  PubMed  Google Scholar 

  2. Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. https://doi.org/10.1038/38444

    Article  PubMed  CAS  Google Scholar 

  3. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9(11):843–854. https://doi.org/10.1038/nrg2438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275. https://doi.org/10.1038/nrm2861

    Article  PubMed  CAS  Google Scholar 

  5. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10(11):882–891. https://doi.org/10.1038/nsb996

    Article  PubMed  CAS  Google Scholar 

  6. Kawashima T, Lorkovic ZJ, Nishihama R et al (2015) Diversification of histone H2A variants during plant evolution. Trends Plant Sci 20(7):419–425. https://doi.org/10.1016/j.tplants.2015.04.005

    Article  PubMed  CAS  Google Scholar 

  7. Draizen EJ, Shaytan AK, Marino-Ramirez L et al (2016) HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants. Database. https://doi.org/10.1093/database/baw014

  8. Coordinators NR (2016) Database resources of the National Center for biotechnology information. Nucleic Acids Res 44(D1):D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  9. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102 Article published online before print in May 2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  11. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schleiffer A, Maier M, Litos G et al (2012) CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14(6):604–613. https://doi.org/10.1038/ncb2493

    Article  PubMed  CAS  Google Scholar 

  13. Soding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server):W244–W248. https://doi.org/10.1093/nar/gki408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38(Database issue):D211–D222. https://doi.org/10.1093/nar/gkp985

    Article  PubMed  CAS  Google Scholar 

  16. Whelan S, Morrison DA (2017) Inferring trees. Methods Mol Biol 1525:349–377. https://doi.org/10.1007/978-1-4939-6622-6_14

    Article  PubMed  CAS  Google Scholar 

  17. Bawono P, Dijkstra M, Pirovano W et al (2017) Multiple sequence alignment. Methods Mol Biol 1525:167–189. https://doi.org/10.1007/978-1-4939-6622-6_8

    Article  PubMed  CAS  Google Scholar 

  18. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blackshields G, Sievers F, Shi W et al (2010) Sequence embedding for fast construction of guide trees for multiple sequence alignment. Algorithms Mol Biol 5:21. https://doi.org/10.1186/1748-7188-5-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang Z (2005) The power of phylogenetic comparison in revealing protein function. Proc Natl Acad Sci U S A 102(9):3179–3180. https://doi.org/10.1073/pnas.0500371102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics Chapter 6:Unit 6 4. https://doi.org/10.1002/0471250953.bi0604s00

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  25. Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23(1):7–9. https://doi.org/10.1093/molbev/msj021

    Article  PubMed  CAS  Google Scholar 

  26. Whelan S, Allen JE, Blackburne BP, Talavera D (2015) ModelOMatic: fast and automated model selection between RY, nucleotide, amino acid, and codon substitution models. Syst Biol 64(1):42–55. https://doi.org/10.1093/sysbio/syu062

    Article  PubMed  CAS  Google Scholar 

  27. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. https://doi.org/10.1093/bioinformatics/btr088

    Article  PubMed  CAS  Google Scholar 

  28. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  PubMed  CAS  Google Scholar 

  29. Coordinators NR (2017) Database resources of the National Center for biotechnology information. Nucleic Acids Res 45(D1):D12–D17. https://doi.org/10.1093/nar/gkw1071

    Article  CAS  Google Scholar 

  30. Rooney AP, Piontkivska H, Nei M (2002) Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family. Mol Biol Evol 19(1):68–75

    Article  CAS  PubMed  Google Scholar 

  31. Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229(2):301–306. https://doi.org/10.1006/excr.1996.0375

    Article  PubMed  CAS  Google Scholar 

  32. Nishino T, Takeuchi K, Gascoigne KE et al (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148(3):487–501. https://doi.org/10.1016/j.cell.2011.11.061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Albig W, Ebentheuer J, Klobeck G et al (1996) A solitary human H3 histone gene on chromosome 1. Hum Genet 97(4):486–491

    Article  CAS  PubMed  Google Scholar 

  34. Chakravarthy S, Bao Y, Roberts VA et al (2004) Structural characterization of histone H2A variants. Cold Spring Harb Symp Quant Biol 69:227–234. https://doi.org/10.1101/sqb.2004.69.227

    Article  PubMed  CAS  Google Scholar 

  35. Eirin-Lopez JM, Gonzalez-Romero R, Dryhurst D et al (2009) The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by a stepwise mutation process that affects three amino acid residues. BMC Evol Biol 9:31. https://doi.org/10.1186/1471-2148-9-31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Faast R, Thonglairoam V, Schulz TC et al (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11(15):1183–1187

    Article  CAS  PubMed  Google Scholar 

  37. Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257(5075):1398–1400

    Article  CAS  PubMed  Google Scholar 

  38. Pehrson JR, Fuji RN (1998) Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res 26(12):2837–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rivera-Casas C, Gonzalez-Romero R, Cheema MS et al (2016) The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin. Epigenetics 11(6):415–425. https://doi.org/10.1080/15592294.2016.1172161

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eirin-Lopez JM, Ishibashi T, Ausio J (2008) H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. FASEB J 22(1):316–326. https://doi.org/10.1096/fj.07-9255com

    Article  PubMed  CAS  Google Scholar 

  41. Contrepois K, Coudereau C, Benayoun BA et al (2017) Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun 8:14995. https://doi.org/10.1038/ncomms14995

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boulard M, Gautier T, Mbele GO et al (2006) The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26(4):1518–1526. https://doi.org/10.1128/MCB.26.4.1518-1526.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Marzluff WF, Gongidi P, Woods KR et al (2002) The human and mouse replication-dependent histone genes. Genomics 80(5):487–498

    Article  CAS  PubMed  Google Scholar 

  44. Churikov D, Siino J, Svetlova M et al (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84(4):745–756. https://doi.org/10.1016/j.ygeno.2004.06.001

    Article  PubMed  CAS  Google Scholar 

  45. Dalmasso MC, Echeverria PC, Zappia MP et al (2006) Toxoplasma gondii has two lineages of histones 2b (H2B) with different expression profiles. Mol Biochem Parasitol 148(1):103–107. https://doi.org/10.1016/j.molbiopara.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  46. Dalmasso MC, Sullivan WJ Jr, Angel SO (2011) Canonical and variant histones of protozoan parasites. Front Biosci 16:2086–2105

    Article  CAS  Google Scholar 

  47. Santoro SW, Dulac C (2012) The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife 1:e00070. https://doi.org/10.7554/eLife.00070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Waterborg JH (2012) Evolution of histone H3: emergence of variants and conservation of post-translational modification sites. Biochem Cell Biol 90(1):79–95. https://doi.org/10.1139/o11-036

    Article  PubMed  CAS  Google Scholar 

  49. Schenk R, Jenke A, Zilbauer M et al (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma 120(3):275–285. https://doi.org/10.1007/s00412-011-0310-4

    Article  PubMed  CAS  Google Scholar 

  50. Wiedemann SM, Mildner SN, Bonisch C et al (2010) Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. J Cell Biol 190(5):777–791. https://doi.org/10.1083/jcb.201002043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Postberg J, Forcob S, Chang WJ, Lipps HJ (2010) The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms. BMC Evol Biol 10:259. https://doi.org/10.1186/1471-2148-10-259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Urahama T, Harada A, Maehara K et al (2016) Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics Chromatin 9:2. https://doi.org/10.1186/s13072-016-0051-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Govin J, Escoffier E, Rousseaux S et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176(3):283–294. https://doi.org/10.1083/jcb.200604141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ferguson L, Ellis PJ, Affara NA (2009) Two novel mouse genes mapped to chromosome Yp are expressed specifically in spermatids. Mamm Genome 20(4):193–206. https://doi.org/10.1007/s00335-009-9175-8

    Article  PubMed  CAS  Google Scholar 

  55. Shaytan AK, Landsman D, Panchenko AR (2015) Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr Opin Struct Biol 32:48–57. https://doi.org/10.1016/j.sbi.2015.02.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Molaro A, Young JM, Malik HS (2018) Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res 28(4):460–473.

    Google Scholar 

  57. Aul RB, Oko RJ (2001) The Major Subacrosomal Occupant of Bull Spermatozoa Is a Novel Histone H2B Variant Associated with the Forming Acrosome during Spermiogenesis. Dev. Biol 239(2):376–387

    Google Scholar 

Download references

Acknowledgments

We would like to thank Paul Talbert and members of the Drinnenberg lab for comments on the manuscript. I.A.D. receives salary support from the CNRS. This work is supported by the Labex DEEP ANR-11-LABX-0044 part of the IDEX Idex PSL ANR-10-IDEX-0001-02 PSL, the Institut Curie and funds from the Atip Avenir 2015 program. A. M. was supported by the Damon Runyon Cancer Research Foundation (DRG:2192-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoine Molaro or Ines A. Drinnenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Molaro, A., Drinnenberg, I.A. (2018). Studying the Evolution of Histone Variants Using Phylogeny. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics