Skip to main content

CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1832))

Abstract

Histone H2A variants play important roles in maintaining the integrity of the genome. For example, the histone variant H2AX is phosphorylated on Ser139 (called γH2AX) at DNA double-strand breaks (DSB) and serves as a signal for the initiation of downstream DNA damage response (DDR) factor recruitment and DNA repair activities within damaged chromatin. For decades, genetic studies in human cells involving DNA damage signaling and repair factors have relied mostly on either knockdown by RNA interference (i.e., shRNA and siRNA) or the use of mouse embryonic fibroblasts derived from knockout (KO) mice. Recent advances in gene editing using ZNF nuclease, TALEN, and CRISPR/Cas9 have allowed the generation of human KO cell lines, allowing genetic models for studying the DDR, including histone H2A variants in human cells. Here, we describe a detailed protocol for generating and verifying KO of H2AX and macroH2A histone H2A variants using CRISPR/Cas9 gene editing in human cancer cell lines. This protocol allows the use and development of genetic systems in human cells to study histone variants and their functions, including within the DDR.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Khare SP, Habib F, Sharma R et al (2012) HIstome—a relational knowledgebase of human histone proteins and histone modifying enzymes. Nucleic Acids Res 40:D337–D342

    Article  CAS  PubMed  Google Scholar 

  2. Maze I, Noh KM, Soshnev AA et al (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15:259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18:115–126

    Article  CAS  PubMed  Google Scholar 

  4. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  5. Musselman CA, Lalonde ME, Cote J et al (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scully R, Xie A (2013) Double strand break repair functions of histone H2AX. Mutat Res 750:5–14

    Article  CAS  PubMed  Google Scholar 

  7. Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Celeste A, Petersen S, Romanienko PJ et al (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stucki M, Clapperton JA, Mohammad D et al (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226

    Article  CAS  PubMed  Google Scholar 

  10. Yuan J, Adamski R, Chen J (2010) Focus on histone variant H2AX: to be or not to be. FEBS Lett 584:3717–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  12. Khurana S, Kruhlak MJ, Kim J et al (2014) A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell Rep 8:1049–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sansoni V, Casas-Delucchi CS, Rajan M et al (2014) The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res 42:6405–6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929

    Article  CAS  PubMed  Google Scholar 

  15. Tolstorukov MY, Goldman JA, Gilbert C et al (2012) Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell 47:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu Y, Ayrapetov MK, Xu C et al (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Monteiro FL, Baptista T, Amado F et al (2014) Expression and functionality of histone H2A variants in cancer. Oncotarget 5:3428–3443

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vardabasso C, Hasson D, Ratnakumar K et al (2014) Histone variants: emerging players in cancer biology. Cell Mol Life Sci 71:379–404

    Article  CAS  PubMed  Google Scholar 

  19. Buschbeck M, Hake SB (2017) Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol 18:299–314

    Article  CAS  PubMed  Google Scholar 

  20. Gruosso T, Mieulet V, Cardon M et al (2016) Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med 8:527–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bibikova M, Beumer K, Trautman JK et al (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  22. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen WT, Alpert A, Leiter C et al (2013) Systematic identification of functional residues in mammalian histone H2AX. Mol Cell Biol 33:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weyemi U, Redon CE, Choudhuri R et al (2016) The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun 7:10711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimada M, Goshima T, Matsuo H et al (2016) Essential role of autoactivation circuitry on Aurora B-mediated H2AX-pS121 in mitosis. Nat Commun 7:12059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leung JW, Makharashvili N, Agarwal P et al (2017) ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes Dev 31:260–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kurien BT, Scofield RH (2006) Western blotting. Methods 38:283–293

    Article  CAS  PubMed  Google Scholar 

  30. Strickfaden H, Hendzel MJ (2017) Immunofluorescence of histone proteins. Methods Mol Biol 1528:165–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fade Gong from the Miller lab for insightful comments on the manuscript. The K.M.M. laboratory is supported by the NIH National Cancer Institute (R01CA198279 and RO1CA201268) and the American Cancer Society (RSG-16-042-01-DMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle M. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leung, J.W.C., Emery, L.E., Miller, K.M. (2018). CRISPR/Cas9 Gene Editing of Human Histone H2A Variant H2AX and MacroH2A. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics