Skip to main content

A Specific Knockdown of Transcription Factor Activities in Arabidopsis

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

Transcription factors are pivotal for the control of development and the response of organisms to changes in the environment. Therefore, a detailed understanding of their functions is of central importance for biology. Over the years, different experimental methods have been developed to study the activities of transcription factors in plants. These methods include perturbation assays, where the activity of a given transcription factor is disrupted and subsequently, the resulting effects are monitored using molecular, genomic, or physiological approaches. Perturbation assays can also be used to distinguish primary roles of transcription factors of interest from secondary effects. Thus, molecular genetic experiments after perturbation can be advantageous or even necessary for the precise understanding of transcription factor function at a certain stage of plant development or in a single tissue or organ type. In this chapter, we describe several commonly used techniques to knock down transcription factor activities and provide detailed information on how those techniques are employed in the model plant Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riechmann JL, Heard J, Martin G et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  2. Riechmann JL (2002) Transcriptional regulation: a genomic overview. Arabidopsis Book 1:e0085

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alvarez JP, Pekker I, Goldshmidt A et al (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18(5):1134–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yin Y, Chory J, Baulcombe D (2005) RNAi in transgenic plants. Curr Protoc Mol Biol Chapter 26:Unit 26 26

    Google Scholar 

  6. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637

    Article  CAS  PubMed  Google Scholar 

  7. Eamens AL, McHale M, Waterhouse PM (2014) The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana. Methods Mol Biol 1062:211–224

    Article  CAS  PubMed  Google Scholar 

  8. Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86(1-2):1–18

    Article  CAS  PubMed  Google Scholar 

  9. Hiratsu K, Ohta M, Matsui K et al (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 514(2-3):351–354

    Article  CAS  PubMed  Google Scholar 

  10. Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21(11):3493–3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hiratsu K, Mitsuda N, Matsui K et al (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321(1):172–178

    Article  CAS  PubMed  Google Scholar 

  12. Hiratsu K, Matsui K, Koyama T et al (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34(5):733–739

    Article  CAS  PubMed  Google Scholar 

  13. Borghi L (2010) Inducible gene expression systems for plants. Methods Mol Biol 655:65–75

    Article  CAS  PubMed  Google Scholar 

  14. Brand L, Horler M, Nuesch E et al (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141(4):1194–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moore I, Galweiler L, Grosskopf D et al (1998) A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci U S A 95(1):376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Craft J, Samalova M, Baroux C et al (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41(6):899–918

    Article  CAS  PubMed  Google Scholar 

  17. Roslan HA, Salter MG, Wood CD et al (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28(2):225–235

    Article  CAS  PubMed  Google Scholar 

  18. Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38(1):164–171

    Article  CAS  PubMed  Google Scholar 

  19. Zuo J, Niu QW, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24(2):265–273

    Article  CAS  PubMed  Google Scholar 

  20. Lampropoulos A, Sutikovic Z, Wenzl C et al (2013) GreenGate–a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One 8(12):e83043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siligato R, Wang X, Yadav SR et al (2016) MultiSite gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol 170(2):627–641

    Article  CAS  PubMed  Google Scholar 

  22. Karimi M, Bleys A, Vanderhaeghen R et al (2007) Building blocks for plant gene assembly. Plant Physiol 145(4):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  24. Bustamante M, Jin J, Casagran O et al (2014) Gene expression analysis by quantitative real-time PCR for floral tissues. Methods Mol Biol 1110:363–382

    Article  CAS  PubMed  Google Scholar 

  25. Eamens AL, Waterhouse PM (2011) Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Methods Mol Biol 701:179–197

    Article  CAS  PubMed  Google Scholar 

  26. Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  PubMed  Google Scholar 

  27. Yan P, Shen W, Gao X et al (2012) High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS One 7(5):e38186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  PubMed  Google Scholar 

  29. Radoeva T, Ten Hove CA, Saiga S et al (2016) Molecular characterization of arabidopsis GAL4/UAS enhancer trap lines identifies novel cell-type-specific promoters. Plant Physiol 171(2):1169–1181

    PubMed  PubMed Central  Google Scholar 

  30. Nakayama N, Arroyo JM, Simorowski J et al (2005) Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. Plant Cell 17(9):2486–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wuest SE, O'Maoileidigh DS, Rae L et al (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109(33):13452–13457

    Article  PubMed  PubMed Central  Google Scholar 

  32. O'Maoileidigh DS, Thomson B, Raganelli A et al (2015) Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations. Plant J 83:344–358

    Article  CAS  PubMed  Google Scholar 

  33. O Maoileidigh DS, Wuest SE, Rae L et al (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25(7):2482–2503

    Article  CAS  Google Scholar 

  34. Ó’Maoiléidigh DS, Graciet E, Wellmer F (2016) Strategies for performing dynamic gene perturbation experiments in flowers. Bio-protocol 6(7):e1774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wellmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zheng, B., Thomson, B., Wellmer, F. (2018). A Specific Knockdown of Transcription Factor Activities in Arabidopsis. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics