Skip to main content

Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression. Moreover, RNA sequencing allows two or potentially more interacting organisms to be analyzed simultaneously. In this chapter, a LCM-RNAseq protocol optimized for root and symbiotic root nodule analysis is presented, using the model legume Medicago truncatula (in interaction with Sinorhizobium meliloti in the nodule samples). This includes the description of procedures for plant material fixation, embedding, and micro-dissection; it is followed by a presentation of techniques for RNA extraction and amplification, adapted for the simultaneous analysis of plant and bacterial cells in interaction or, more generally, polyadenylated and non-polyadenylated RNAs. Finally, step-by-step statistical analyses of RNAseq data are described. Those are critical for quality assessment of the whole procedure and for the identification of differentially expressed genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benfey PN (2012) Toward a systems analysis of the root. Cold Spring Harb Symp Quant Biol 77:91–96. https://doi.org/10.1101/sqb.2012.77.014506

    Article  PubMed  CAS  Google Scholar 

  2. Sparks EE, Drapek C, Gaudinier A, Li S, Ansariola M, Shen N, Hennacy JH, Zhang J, Turco G, Petricka JJ, Foret J, Hartemink AJ, Gordan R, Megraw M, Brady SM, Benfey PN (2016) Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade through opposing activities of both activators and repressors. Dev Cell 39(5):585–596. https://doi.org/10.1016/j.devcel.2016.09.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Moreno-Risueno MA, Sozzani R, Yardimci GG, Petricka JJ, Vernoux T, Blilou I, Alonso J, Winter CM, Ohler U, Scheres B, Benfey PN (2015) Transcriptional control of tissue formation throughout root development. Science 350(6259):426–430. https://doi.org/10.1126/science.aad1171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Theissen G, Melzer R, Rumpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18):3259–3271. https://doi.org/10.1242/dev.134080

    Article  PubMed  CAS  Google Scholar 

  5. Chandler JW, Werr W (2015) Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci 20(5):291–300. https://doi.org/10.1016/j.tplants.2015.02.003

    Article  PubMed  CAS  Google Scholar 

  6. De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(6197):1255215. https://doi.org/10.1126/science.1255215

    Article  PubMed  CAS  Google Scholar 

  7. Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18(6):1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, Benfey PN (2005) Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods 2(8):615–619. https://doi.org/10.1038/nmeth0805-615

    Article  PubMed  CAS  Google Scholar 

  9. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806. https://doi.org/10.1126/science.1146265

    Article  PubMed  CAS  Google Scholar 

  10. Zhang C, Barthelson RA, Lambert GM, Galbraith DW (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147(1):30–40. https://doi.org/10.1104/pp.107.115246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106(44):18843–18848. https://doi.org/10.1073/pnas.0906131106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69(3):510–528. https://doi.org/10.1111/j.1365-313X.2011.04810.x

    Article  PubMed  CAS  Google Scholar 

  13. Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157(4):2023–2043. https://doi.org/10.1104/pp.111.186635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190(2):351–368. https://doi.org/10.1111/j.1469-8137.2010.03535.x

    Article  PubMed  CAS  Google Scholar 

  15. Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77(6):817–837. https://doi.org/10.1111/tpj.12442

    Article  PubMed  CAS  Google Scholar 

  16. Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJ, Gouzy J, Frugier F, Gamas P (2016) A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol 171(3):2256–2276. https://doi.org/10.1104/pp.16.00711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H (2013) Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 8(5):e64377. https://doi.org/10.1371/journal.pone.0064377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Harrop TW, Ud Din I, Gregis V, Osnato M, Jouannic S, Adam H, Kater MM (2016) Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. Plant J 86(1):75–88. https://doi.org/10.1111/tpj.13147

    Article  PubMed  CAS  Google Scholar 

  19. Yu P, Baldauf JA, Lithio A, Marcon C, Nettleton D, Li C, Hochholdinger F (2016) Root type-specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns. Plant Physiol 170(3):1783–1798. https://doi.org/10.1104/pp.15.01885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang D, Wang X, Drews GN, Yadegari R (2015) RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27(3):513–531. https://doi.org/10.1105/tpc.114.135657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168(4):1684–1701. https://doi.org/10.1104/pp.15.00287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Torti S, Fornara F, Vincent C, Andrés F, Nordström K, Göbel U, Knoll D, Schoof H, Coupland G (2012) Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering. Plant Cell 24(2):444–462. https://doi.org/10.1105/tpc.111.092791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ji H, Gheysen G, Denil S, Lindsey K, Topping JF, Nahar K, Haegeman A, De Vos WH, Trooskens G, Van Criekinge W, De Meyer T, Kyndt T (2013) Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. J Exp Bot 64(12):3885–3898. https://doi.org/10.1093/jxb/ert219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Khan D, Millar JL, Girard IJ, Chan A, Kirkbride RC, Pelletier JM, Kost S, Becker MG, Yeung EC, Stasolla C, Goldberg RB, Harada JJ, Belmonte MF (2015) Transcriptome atlas of the Arabidopsis funiculus – a study of maternal seed subregions. Plant J 82(1):41–53. https://doi.org/10.1111/tpj.12790

    Article  PubMed  CAS  Google Scholar 

  25. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, Grossniklaus U (2012) A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing. PLoS One 7(1):e29685. https://doi.org/10.1371/journal.pone.0029685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Blokhina O, Valerio C, Sokołowska K, Zhao L, Kärkönen A, Niittylä T, Fagerstedt K (2016) Laser capture microdissection protocol for xylem tissues of woody plants. Front Plant Sci 7:1965. https://doi.org/10.3389/fpls.2016.01965

    Article  PubMed  Google Scholar 

  28. Chandran D, Scanlon MJ, Ohtsu K, Timmermans MC, Schnable PS, Wildermuth MC (2015) Laser microdissection-mediated isolation and in vitro transcriptional amplification of plant RNA. Curr Protoc Mol Biol 112:25A.23.21–25A.23.23. https://doi.org/10.1002/0471142727.mb25a03s112

    Article  Google Scholar 

  29. Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM (2003) Laser capture microdissection of cells from plant tissues. Plant Physiol 132(1):27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 123(6):807–813. https://doi.org/10.1007/s10265-010-0319-4

    Article  PubMed  CAS  Google Scholar 

  31. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15(3):583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Day RC (2010) Laser microdissection of paraffin-embedded plant tissues for transcript profiling. Methods Mol Biol 655:321–346. https://doi.org/10.1007/978-1-60761-765-5_22

    Article  PubMed  CAS  Google Scholar 

  34. Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10(8):397–406. https://doi.org/10.1016/j.tplants.2005.06.006

    Article  PubMed  CAS  Google Scholar 

  35. Anjam MS, Ludwig Y, Hochholdinger F, Miyaura C, Inada M, Siddique S, Grundler FM (2016) An improved procedure for isolation of high-quality RNA from nematode-infected Arabidopsis roots through laser capture microdissection. Plant Methods 12:25. https://doi.org/10.1186/s13007-016-0123-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42(1):111–123. https://doi.org/10.1111/j.1365-313X.2005.02355.x

    Article  PubMed  CAS  Google Scholar 

  37. Kehr J (2003) Single cell technology. Curr Opin Plant Biol 6(6):617–621

    Article  CAS  PubMed  Google Scholar 

  38. Gautam V, Sarkar AK (2015) Laser assisted microdissection, an efficient technique to understand tissue specific gene expression patterns and functional genomics in plants. Mol Biotechnol 57(4):299–308. https://doi.org/10.1007/s12033-014-9824-3

    Article  PubMed  CAS  Google Scholar 

  39. Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, Cottret L, Gallardo K, Noirot C, Jardinaud MF, Gamas P (2016) Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat Plants 2(11):16166. https://doi.org/10.1038/nplants.2016.166

    Article  PubMed  CAS  Google Scholar 

  40. Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase pol IVb/pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135(4):635–648. https://doi.org/10.1016/j.cell.2008.09.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Delfour C, Roger P, Bret C, Berthe ML, Rochaix P, Kalfa N, Raynaud P, Bibeau F, Maudelonde T, Boulle N (2006) RCL2, a new fixative, preserves morphology and nucleic acid integrity in paraffin-embedded breast carcinoma and microdissected breast tumor cells. J Mol Diagn 8(2):157–169. https://doi.org/10.2353/jmoldx.2006.050105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dotti I, Bonin S, Basili G, Nardon E, Balani A, Siracusano S, Zanconati F, Palmisano S, De Manzini N, Stanta G (2010) Effects of formalin, methacarn, and fineFIX fixatives on RNA preservation. Diagn Mol Pathol 19(2):112–122. https://doi.org/10.1097/PDM.0b013e3181b520f8

    Article  PubMed  CAS  Google Scholar 

  43. Vitha S, Baluska F, Mews M, Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem 45(1):89–95

    Article  CAS  PubMed  Google Scholar 

  44. Steedman HF (1957) Polyester wax; a new ribboning embedding medium for histology. Nature 179(4574):1345

    Article  CAS  PubMed  Google Scholar 

  45. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Agence Nationale de la Recherche (ANR) (SYMbiMICS project). We are grateful to Jérôme Gouzy (LIPM, Toulouse) who contributed to launch the SYMbiMICS project and provided strong bioinformatics support. We thank Yves Martinez (imagery platform, FR AIB, Toulouse) for his advice on the LCM equipment, Olivier Catrice (LIPM) and Antonius Timmers (LIPM) for their advice on plant sample fixing and embedding, as well as Yann Pecrix (LIPM) and Marc Ellis for critical reading of this manuscript. The microdissection equipment was provided by the FR AIB imagery platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Gamas .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary File 1

■(TXT 73 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roux, B., Rodde, N., Moreau, S., Jardinaud, MF., Gamas, P. (2018). Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti . In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics