Skip to main content

Master Regulatory Transcription Factors in Plant Development: A Blooming Perspective

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

Transcription factors that trigger major developmental decisions in plants and animals are termed “master regulators”. Such master regulators are classically seen as acting on the top of a regulatory hierarchy that determines a complete developmental program, and they usually encode transcription factors. Here, we introduce master regulators of flowering time and flower development as examples to show how analysis of molecular interactions and gene-regulatory networks in plants has changed our view on the molecular mechanisms by which these factors control developmental processes. A picture has emerged that emphasizes a complex combinatorial interplay in determining cell-type transcriptional programs, and a high level of feedback control. The expression of master regulators themselves is usually regulated by multiple factors integrating environmental and endogenous spatiotemporal cues. Master regulatory transcription factors regulate gene expression by different mechanisms, including modifications in chromatin status in the bound regions. A poorly understood phenomenon is how developmental master regulators exert functions in different cell- and organ types. This is especially relevant for those factors that have important functions in several developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohno S (1979) Major sex-determining genes. Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-81261-3

    Book  Google Scholar 

  2. Lewis EB (1985) Regulation of the genes of the bithorax complex in drosophila. Cold Spring Harb Symp Quant Biol 50:155–164. https://doi.org/10.1101/SQB.1985.050.01.021

    Article  PubMed  CAS  Google Scholar 

  3. Schneuwly S, Klemenz R, Gehring WJ (1987) Redesigning the body plan of drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325:816–818. https://doi.org/10.1038/325816a0

    Article  PubMed  CAS  Google Scholar 

  4. García-Bellido A (1975) Genetic control of wing disc development in drosophila. Ciba Found Symp 0(29):161–182

    PubMed  Google Scholar 

  5. Choo SW, Russell S (2011) Genomic approaches to understanding hox gene function. Adv Genet 76:55–91

    PubMed  CAS  Google Scholar 

  6. Chan SS-K, Kyba M (2013) What is a master regulator? J Stem Cell Res Ther 3:114. https://doi.org/10.4172/2157-7633.1000e114

    Article  PubMed  PubMed Central  Google Scholar 

  7. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193. https://doi.org/10.1038/nrm.2016.8

    Article  PubMed  CAS  Google Scholar 

  8. Jerković I, Ibrahim DM, Andrey G, Haas S, Hansen P, Janetzki C, González Navarrete I, Robinson PN, Hecht J, Mundlos S (2017) Genome-wide binding of posterior HOXA/D transcription factors reveals subgrouping and association with CTCF. PLoS Genet 13:e1006567. https://doi.org/10.1371/journal.pgen.1006567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147:1270–1282. https://doi.org/10.1016/j.cell.2011.10.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Crews ST, Pearson JC (2009) Transcriptional autoregulation in development. Curr Biol 19:R241–R246. https://doi.org/10.1016/j.cub.2009.01.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Oestreich KJ, Weinmann AS (2012) Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nat Rev Immunol 12:799–804. https://doi.org/10.1038/nri3321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sassi M, Vernoux T (2013) Auxin and self-organization at the shoot apical meristem. J Exp Bot 64:2579–2592. https://doi.org/10.1093/jxb/ert101

    Article  PubMed  CAS  Google Scholar 

  13. Della Pina S, Souer E, Koes R (2014) Arguments in the evo-devo debate: say it with flowers! J Exp Bot 65:2231–2242. https://doi.org/10.1093/jxb/eru111

    Article  PubMed  CAS  Google Scholar 

  14. Smaczniak C, Immink RGH, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081–3098. https://doi.org/10.1242/dev.074674

    Article  PubMed  CAS  Google Scholar 

  15. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of arabidopsis. Science 316:1030–1033. https://doi.org/10.1126/science.1141752

    Article  PubMed  CAS  Google Scholar 

  16. Abe M (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. https://doi.org/10.1126/science.1115983

    Article  PubMed  CAS  Google Scholar 

  17. Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335. https://doi.org/10.1038/nature10272

    Article  PubMed  CAS  Google Scholar 

  18. Samach A (2000) Distinct roles of CONSTANS target genes in reproductive development of arabidopsis. Science 288:1613–1616. https://doi.org/10.1126/science.288.5471.1613

    Article  PubMed  CAS  Google Scholar 

  19. Immink RGH, Pose D, Ferrario S, Ott F, Kaufmann K, Valentim FL, de Folter S, van der Wal F, van Dijk ADJ, Schmid M, Angenent GC (2012) Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol 160:433–449. https://doi.org/10.1104/pp.112.202614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912. https://doi.org/10.1101/gad.373506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Teo ZWN, Song S, Wang Y-Q, Liu J, Yu H (2014) New insights into the regulation of inflorescence architecture. Trends Plant Sci 19:158–165. https://doi.org/10.1016/j.tplants.2013.11.001

    Article  PubMed  CAS  Google Scholar 

  23. Denay G, Chahtane H, Tichtinsky G, Parcy F (2017) A flower is born: an update on Arabidopsis floral meristem formation. Curr Opin Plant Biol 35:15–22. https://doi.org/10.1016/j.pbi.2016.09.003

    Article  PubMed  Google Scholar 

  24. Grandi V, Gregis V, Kater MM (2012) Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. Plant J 69:881–893. https://doi.org/10.1111/j.1365-313X.2011.04840.x

    Article  PubMed  CAS  Google Scholar 

  25. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843. https://doi.org/10.1111/j.1365-313X.2008.03552.x

    Article  PubMed  CAS  Google Scholar 

  26. Smith HMS, Ung N, Lal S, Courtier J (2011) Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot 62:583–593. https://doi.org/10.1093/jxb/erq296

    Article  PubMed  CAS  Google Scholar 

  27. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059. https://doi.org/10.1126/science.1114358

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi N, Wu M-F, Winter C, Berns M, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek B, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24:271–282. https://doi.org/10.1016/j.devcel.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  29. Teotia S, Tang G (2015) To bloom or not to bloom: role of micrornas in plant flowering. Mol Plant 8:359–377. https://doi.org/10.1016/j.molp.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  30. Müller-Xing R, Clarenz O, Pokorny L, Goodrich J, Schubert D (2014) Polycomb-group proteins and FLOWERING LOCUS T maintain commitment to flowering in arabidopsis thaliana. Plant Cell Online 26(6):2457–2471

    Article  CAS  Google Scholar 

  31. Sun B, Xu Y, Ng K-H, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804. https://doi.org/10.1101/gad.1800409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382. https://doi.org/10.1105/tpc.106.041798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yu H, Ito T, Wellmer F, Meyerowitz EM (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36:157–161. https://doi.org/10.1038/ng1286

    Article  PubMed  CAS  Google Scholar 

  34. Ferrándiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734. https://doi.org/10.1046/j.1365-313x.1999.00442.x

    Article  PubMed  Google Scholar 

  35. Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  36. Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517. https://doi.org/10.1105/tpc.1.1.37

    Article  PubMed  CAS  Google Scholar 

  37. Balanzà V, Martínez-Fernández I, Ferrándiz C (2014) Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J Exp Bot 65:1193–1203. https://doi.org/10.1093/jxb/ert482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  39. Ripoll JJ, Roeder AHK, Ditta GS, Yanofsky MF (2011) A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 138:5167–5176. https://doi.org/10.1242/dev.073031

    Article  PubMed  CAS  Google Scholar 

  40. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. https://doi.org/10.1105/tpc.2.8.755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  CAS  PubMed  Google Scholar 

  42. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. https://doi.org/10.1038/35054083

    Article  PubMed  CAS  Google Scholar 

  43. Causier B, Schwarz-Sommer Z, Davies B (2010) Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol 21:73–79. https://doi.org/10.1016/j.semcdb.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  44. Airoldi CA (2010) Determination of sexual organ development. Sex Plant Reprod 23:53–62. https://doi.org/10.1007/s00497-009-0126-z

    Article  PubMed  Google Scholar 

  45. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587. https://doi.org/10.1126/science.285.5427.585

    Article  PubMed  CAS  Google Scholar 

  46. Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090. https://doi.org/10.1371/journal.pbio.1000090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gomez-Mena C (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132:429–438. https://doi.org/10.1242/dev.01600

    Article  PubMed  CAS  Google Scholar 

  48. Bomblies K, Dagenais N, Weigel D (1999) Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2. Dev Biol 216:260–264. https://doi.org/10.1006/dbio.1999.9504

    Article  PubMed  CAS  Google Scholar 

  49. Krizek BA, Lewis MW, Fletcher JC (2006) RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J 45:369–383. https://doi.org/10.1111/j.1365-313X.2005.02633.x

    Article  PubMed  CAS  Google Scholar 

  50. Bao X, Franks RG, Levin JZ, Liu Z (2004) Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell 16:1478–1489. https://doi.org/10.1105/tpc.021147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642. https://doi.org/10.1242/dev.036673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89. https://doi.org/10.1126/science.1185244

    Article  PubMed  CAS  Google Scholar 

  53. Chae E, Tan QK-G, Hill TA, Irish VF (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235–1245. https://doi.org/10.1242/dev.015842

    Article  PubMed  CAS  Google Scholar 

  54. Bowman JL, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz EM (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114:599–615

    PubMed  CAS  Google Scholar 

  55. Takeda S, Matsumoto N, Okada K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131:425–434

    Article  CAS  PubMed  Google Scholar 

  56. Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of superman in maintaining ARabidopsis floral whorl boundaries. Nature 378(6553):199–203

    Article  CAS  PubMed  Google Scholar 

  57. Davis TL, Rebay I (2017) Master regulators in development: views from the drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 421:93–107. https://doi.org/10.1016/j.ydbio.2016.12.005

    Article  PubMed  CAS  Google Scholar 

  58. Yan W, Chen D, Kaufmann K (2016) Molecular mechanisms of floral organ specification by MADS domain proteins. Curr Opin Plant Biol 29:154–162. https://doi.org/10.1016/j.pbi.2015.12.004

    Article  PubMed  CAS  Google Scholar 

  59. ÓMaoiléidigh DS, Wuest SE, Rae L, Raganelli A, Ryan PT, Kwasniewska K, Das P, Lohan AJ, Loftus B, Graciet E, Wellmer F (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25:2482–2503. https://doi.org/10.1105/tpc.113.113209

    Article  PubMed  CAS  Google Scholar 

  60. Goslin K, Zheng B, Serrano-Mislata A, Rae L, Ryan PT, Kwaśniewska K, Thomson B, Ó’Maoiléidigh DS, Madueño F, Wellmer F, Graciet E (2017) Transcription factor interplay between leafy and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol 174:1097–1109. https://doi.org/10.1104/pp.17.00098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Winter CM, Yamaguchi N, Wu M-F, Wagner D (2015) Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation. Physiol Plant 155:55–73. https://doi.org/10.1111/ppl.12357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292. https://doi.org/10.1016/j.cell.2016.04.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Smaczniak C, Muino JM, Chen D, Angenent GC, Kaufmann K (2017) Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29(8):1822–1835. https://doi.org/10.1105/tpc.17.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smaczniak C, Immink RGH, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci 109:1560–1565. https://doi.org/10.1073/pnas.1112871109

    Article  PubMed  PubMed Central  Google Scholar 

  65. Heyndrickx KS, Van de Velde J, Wang C, Weigel D, Vandepoele K (2014) A functional and evolutionary perspective on transcription factor binding in arabidopsis thaliana. Plant Cell Online 26(10):3894–3910

    Article  CAS  Google Scholar 

  66. Ito T, Ng K-H, Lim T-S, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in arabidopsis. Plant Cell Online 19:3516–3529. https://doi.org/10.1105/tpc.107.055467

    Article  CAS  Google Scholar 

  67. Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci 109:13452–13457. https://doi.org/10.1073/pnas.1207075109

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pajoro A, Madrigal P, Muiño JM, Matus J, Jin J, Mecchia MA, Debernardi JM, Palatnik JF, Balazadeh S, Arif M, Ó’Maoiléidigh DS, Wellmer F, Krajewski P, Riechmann J-L, Angenent GC, Kaufmann K (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15:R41. https://doi.org/10.1186/gb-2014-15-3-r41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Iyer-Pascuzzi AS, Benfey PN (2010) Fluorescence-activated cell sorting in plant developmental biology. Methods Mol Biol 655:313–319

    Article  CAS  PubMed  Google Scholar 

  70. Slane D, Bayer M (2017) Cell type-specific gene expression profiling using fluorescence-activated nuclear sorting. Methods Mol Biol 1629:27–35

    Article  CAS  PubMed  Google Scholar 

  71. Deal RB, Henikoff S (2011) The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat Protoc 6:56–68. https://doi.org/10.1038/nprot.2010.175

    Article  PubMed  CAS  Google Scholar 

  72. Zanetti ME, Chang I-F, Gong F, Galbraith DW, Bailey-Serres J (2005) Immunopurification of polyribosomal complexes of arabidopsis for global analysis of gene expression. Plant Physiol 138:624–635. https://doi.org/10.1104/pp.105.059477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tian C, Zhang X, He J, Yu H, Wang Y, Shi B, Han Y, Wang G, Feng X, Zhang C, Wang J, Qi J, Yu R, Jiao Y (2014) An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation. Mol Syst Biol 10:755

    Article  CAS  PubMed  Google Scholar 

  74. Jiao Y, Meyerowitz EM (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 6:419. https://doi.org/10.1038/msb.2010.76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yan W, Chen D, Kaufmann K (2016) Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene. Plant Methods 12:23. https://doi.org/10.1186/s13007-016-0125-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647–1657

    PubMed  CAS  Google Scholar 

  77. Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) Cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell Online 22:1425–1440. https://doi.org/10.1105/tpc.110.074682

    Article  CAS  Google Scholar 

  78. Serrano-Mislata A, Fernández-Nohales P, Doménech MJ, Hanzawa Y, Bradley D, Madueño F (2016) Separate elements of the TERMINAL FLOWER 1 cis -regulatory region integrate pathways to control flowering time and shoot meristem identity. Development 143:3315–3327. https://doi.org/10.1242/dev.135269

    Article  PubMed  CAS  Google Scholar 

  79. Muiño JM, de Bruijn S, Pajoro A, Geuten K, Vingron M, Angenent GC, Kaufmann K (2016) Evolution of DNA-binding sites of a floral master regulatory transcription factor. Mol Biol Evol 33:185–200. https://doi.org/10.1093/molbev/msv210

    Article  PubMed  CAS  Google Scholar 

  80. Sridhar VV, Surendrarao A, Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159–3166. https://doi.org/10.1242/dev.02498

    Article  PubMed  CAS  Google Scholar 

  81. Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722. https://doi.org/10.1016/j.devcel.2009.03.011

    Article  PubMed  Google Scholar 

  82. Lee I, Wolfe DS, Nilsson O, Weigel D (1997) A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol 7:95–104. https://doi.org/10.1016/S0960-9822(06)00053-4

    Article  PubMed  Google Scholar 

  83. Wu M-F, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. elife 4:e09269. https://doi.org/10.7554/eLife.09269

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the arabidopsis shoot meristem. Dev Cell 37:254–266. https://doi.org/10.1016/j.devcel.2016.04.001

    Article  PubMed  CAS  Google Scholar 

  85. Förderer A, Zhou Y, Turck F (2016) The age of multiplexity: recruitment and interactions of Polycomb complexes in plants. Curr Opin Plant Biol 29:169–178. https://doi.org/10.1016/j.pbi.2015.11.010

    Article  PubMed  CAS  Google Scholar 

  86. Ma X, Lv S, Zhang C, Yang C (2013) Histone deacetylases and their functions in plants. Plant Cell Rep 32:465–478. https://doi.org/10.1007/s00299-013-1393-6

    Article  PubMed  CAS  Google Scholar 

  87. Wu M-F, Sang Y, Bezhani S, Yamaguchi N, Han S-K, Li Z, Su Y, Slewinski TL, Wagner D (2012) SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci 109:3576–3581. https://doi.org/10.1073/pnas.1113409109

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liu X, Kim YJ, Muller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in arabidopsis by directly repressing WUSCHEL through recruitment of polycomb group proteins. Plant Cell 23:3654–3670. https://doi.org/10.1105/tpc.111.091538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sayou C, Nanao MH, Jamin M, Posé D, Thévenon E, Grégoire L, Tichtinsky G, Denay G, Ott F, Peirats Llobet M, Schmid M, Dumas R, Parcy F (2016) A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat Commun 7:11222. https://doi.org/10.1038/ncomms11222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492. https://doi.org/10.1038/ng.253

    Article  PubMed  CAS  Google Scholar 

  91. Bemer M, van Mourik H, Muiño JM, Ferrándiz C, Kaufmann K, Angenent GC (2017) FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J Exp Bot 68(13):3391–3403. https://doi.org/10.1093/jxb/erx184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853. https://doi.org/10.1016/S0092-8674(04)00217-X

    Article  PubMed  CAS  Google Scholar 

  93. McCarthy EW, Mohamed A, Litt A (2015) Functional divergence of APETALA1 and FRUITFULL is due to changes in both regulation and coding sequence. Front Plant Sci 6:1–14. https://doi.org/10.3389/fpls.2015.01076

    Article  Google Scholar 

  94. Ye L, Wang B, Zhang W-G, Shan H, Kong H (2016) Gain of an auto-regulatory site led to divergence of the Arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space and level of expression and regulation of one paralog by the other. Plant Physiol 171:00320.2016. https://doi.org/10.1104/pp.16.00320

    Article  CAS  Google Scholar 

  95. Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M (2010) Orchestration of the floral transition and floral development in arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell Online 22:2156–2170. https://doi.org/10.1105/tpc.110.075606

    Article  CAS  Google Scholar 

  96. Huang Z, Shi T, Zheng B, Yumul RE, Liu X, You C, Xiao L, Chen X (2017) APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol 215(3):1197–1209

    Article  CAS  PubMed  Google Scholar 

  97. Modrusan Z, Reiser L, Feldmann KA, Fischer RL, Haughn GW (1994) Homeotic transformation of ovules into carpel-like structures in arabidopsis. Plant Cell 6:333–349. https://doi.org/10.1105/tpc.6.3.333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Western T, Burn J, Tan W, Skinner DJ, Martin-McCaffrey L, Moffatt BA, Haughn GW (2001) Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiol 127:998–1011. https://doi.org/10.1104/pp.010410.upon

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jofuku KD (1994) Control of arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell Online 6:1211–1225. https://doi.org/10.1105/tpc.6.9.1211

    Article  CAS  Google Scholar 

  100. Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci 102:3117–3122. https://doi.org/10.1073/pnas.0409893102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  101. Sparks EE, Drapek C, Gaudinier A, Li S, Ansariola M, Shen N, Hennacy JH, Zhang J, Turco G, Petricka JJ, Foret J, Hartemink AJ, Gordân R, Megraw M, Brady SM, Benfey PN (2016) Establishment of expression in the SHORTROOT-SCARECROW transcriptional cascade through opposing activities of both activators and repressors. Dev Cell 39:585–596. https://doi.org/10.1016/j.devcel.2016.09.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE, Ansari AZ (2017) Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. elife 6:e19272. https://doi.org/10.7554/eLife.19272

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

K.K. wishes to thank the Alexander von Humboldt foundation and the BMBF for support. C.A. has been funded by the Cambridge University Botanic Garden Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerstin Kaufmann or Chiara A. Airoldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaufmann, K., Airoldi, C.A. (2018). Master Regulatory Transcription Factors in Plant Development: A Blooming Perspective. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics