Skip to main content

Diversity and Plasticity of Plastids in Land Plants

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

Abstract

Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gunning B, Koenig F, Govindjee PM (2007) A dedication to pioneers of research on chloroplast structure. In: Wise RR, Hoober JK (eds), Advances in photosynthesis and respiration, vol 23., The structure and function of plastids. Springer, New York, pp xxiii–xxxxi

    Google Scholar 

  2. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304(5668):253–257. https://doi.org/10.1126/science.1094884

    Article  PubMed  CAS  Google Scholar 

  3. Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000Prime Rep 6(40). https://doi.org/10.12703/P6-40.eCollection2014

  4. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5(4):174–182

    Article  CAS  PubMed  Google Scholar 

  5. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144

    Article  PubMed  CAS  Google Scholar 

  6. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37(6):951–959

    Article  Google Scholar 

  7. Timmis JN, Ayliffe MA, Huang CY et al (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5(2):123–135. https://doi.org/10.1038/nrg1271

    Article  CAS  PubMed  Google Scholar 

  8. Syvanen M, Kado CI (2001) Horizontal gene transfer. Academic Press, Massachusetts

    Google Scholar 

  9. Keeling PJ, Archibald JM (2008) Organelle evolution: what's in a name? Curr Biol 18(8):R345–R347

    Article  CAS  PubMed  Google Scholar 

  10. Koumandou VL, Nisbet RER, Barbrook AC et al (2004) Dinoflagellate chloroplasts–where have all the genes gone? Trends Genet 20(5):261–267

    Article  CAS  PubMed  Google Scholar 

  11. Allen JF, Raven JA (1996) Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol 42(5):482–492

    Article  CAS  PubMed  Google Scholar 

  12. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol 118(1):9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29(3):380–395

    Article  CAS  PubMed  Google Scholar 

  14. Allen JF (2003) The function of genomes in bioenergetic organelles. Phil Trans R Soc London B Biol Sci 358(1429):19–38

    Article  CAS  Google Scholar 

  15. Hagemann R (2010) The foundation of extranuclear inheritance: plastid and mitochondrial genetics. Mol Gen Genomics 283(3):199–209

    Article  CAS  Google Scholar 

  16. Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302(5651):1698–1704

    Article  CAS  PubMed  Google Scholar 

  17. Leech R, Pyke K (1988) Chloroplast division in higher plants with particular reference to wheat. Cambridge University Press, Cambridge

    Google Scholar 

  18. Osteryoung KW, Pyke KA (2014) Division and dynamic morphology of plastids. Annu Rev Plant Biol 65:443–472. https://doi.org/10.1146/annurev-arplant-050213-035748

    Article  PubMed  CAS  Google Scholar 

  19. Sundqvist C, Björn L, Virgin H (1980) Factors in chloroplast differentiation. In: Reinert J (ed), Chloroplasts. Results and Problems in Cell Differentiation, vol 10. Springer, Berlin, Heidelberg, pp 201–224

    Google Scholar 

  20. Andersson M, Dörmann P (2009) Chloroplast membrane lipid biosynthesis and transport. In: Sandelius AS, Aronsson H (eds), The chloroplast. Interactions with the Environment, Springer, New York, pp 125–158

    Google Scholar 

  21. Block MA, Dorne A-J, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258(21):13281–13286

    PubMed  CAS  Google Scholar 

  22. Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J (2009) The chloroplast envelope proteome and lipidome. In: In: Sandelius AS, Aronsson H (eds), The chloroplast. Interactions with the Environment, Springer, New York, pp 41–88

    Google Scholar 

  23. Spetea C, Aronsson H (2012) Mechanisms of transport across membranes in plant chloroplasts. Curr Chem Biol 6(3):230–243

    Article  Google Scholar 

  24. Wellburn A, Quail P, Gunning B (1977) Examination of ribosome-like particles in isolated prolamellar bodies. Planta 134(1):45–52

    Article  CAS  PubMed  Google Scholar 

  25. Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7(7):1105–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmed T, Yin Z, Bhushan S (2016) Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Sci Rep 6:35793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dünschede B, Träger C, Schröder CV, Ziehe D, Walter B, Funke S, Hofmann E, Schünemann D (2015) Chloroplast SRP54 was recruited for posttranslational protein transport via complex formation with chloroplast SRP43 during land plant evolution. J Biol Chem 290(21):13104–13114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17(5):421–425

    Article  CAS  Google Scholar 

  29. Kolodner R, Tewari K (1975) The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta 402(3):372–390

    Article  CAS  PubMed  Google Scholar 

  30. Bendich AJ (1987) Why do chloroplasts and mitochondria contain so many copies of their genome? BioEssays 6(6):279–282

    Article  CAS  PubMed  Google Scholar 

  31. Solymosi K, Keresztes Á (2012) Plastid structure, diversification and interconversions II. Land plants. Curr Chem Biol 6(3):187–204

    Article  Google Scholar 

  32. Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18(4):186–194

    Article  CAS  PubMed  Google Scholar 

  33. Brangeon J, Mustardy L (1979) Ontogenetic assembly of intra-chloroplastic lamellae viewed in 3-dimension. Biol Cell 36:71–80

    Google Scholar 

  34. Lindquist E, Solymosi K, Aronsson H (2016) Vesicles are persistent features of different plastids. Traffic 17(10):1125–1138

    Article  CAS  PubMed  Google Scholar 

  35. Solymosi K, Aronsson H (2013) Etioplasts and their significance in chloroplast biogenesis. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, Vol 36, plastid development in leaves during growth and senescence. Springer, New York, pp 39–71

    Chapter  Google Scholar 

  36. Ytterberg AJ, Peltier J-B, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158(3):1172–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 1847(9):889–899

    Article  CAS  PubMed  Google Scholar 

  40. Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272

    Article  CAS  Google Scholar 

  41. Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105(2):123–134

    Article  CAS  PubMed  Google Scholar 

  42. Karim S, Alezzawi M, Garcia-Petit C, Solymosi K, Khan NZ, Lindquist E, Dahl P, Hohmann S, Aronsson H (2014) A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol Biol 84(6):675–692

    Article  CAS  PubMed  Google Scholar 

  43. Robinson DG, Brandizzi F, Hawes C, Nakano A (2015) Vesicles versus tubes: is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes? Plant Physiol 168(2):393–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khan NZ, Lindquist E, Aronsson H (2013) New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 8(4):e59898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J 63(1):73–85. https://doi.org/10.1111/j.1365-313X.2010.04225.x

    Article  PubMed  CAS  Google Scholar 

  46. Szczepanik J, Sowiński P (2014) The occurrence of chloroplast peripheral reticulum in grasses: a matter of phylogeny or a matter of function? Acta Physiol Plant 36(5):1133–1142

    Article  CAS  Google Scholar 

  47. Khandakar K, Bradbeer JW (1989) Primary leaf growth in bean (Phaseolus vulgaris). Cytologia 54(3):409–417

    Article  Google Scholar 

  48. Lopez-Juez E, Pyke KA (2004) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49(5–6):557–577

    Google Scholar 

  49. Aach H, Bode H, Robinson DG, Graebe JE (1997) ent-Kaurene synthase is located in proplastids of meristematic shoot tissues. Planta 202(2):211–219

    Article  CAS  Google Scholar 

  50. Boland MJ, Schubert KR (1983) Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch Biochem Biophys 220(1):179–187

    Article  CAS  PubMed  Google Scholar 

  51. Wise RR (2007) The diversity of plastid form and function. In: Wise RR, Hoober JK (eds), Advances in photosynthesis and respiration Vol. 23, the structure and function of plastids. Springer, New York, pp 3–26

    Google Scholar 

  52. Pogson BJ, Ganguly D, Albrecht-Borth V (2015) Insights into chloroplast biogenesis and development. Biochim Biophys Acta 1847(9):1017–1024

    Article  CAS  PubMed  Google Scholar 

  53. Solymosi K, Morandi D, Bóka K, Böddi B, Schoefs B (2012) High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds. Planta 235(5):1035–1049

    Article  CAS  PubMed  Google Scholar 

  54. Vitányi B, Kósa A, Solymosi K, Böddi B (2013) Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions. Physiol Plant 148(2):307–315

    Article  CAS  PubMed  Google Scholar 

  55. Solymosi K, Schoefs B (2010) Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynth Res 105(2):143–166

    Article  CAS  PubMed  Google Scholar 

  56. Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54(2):148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barton KA, Schattat MH, Jakob T, Hause G, Wilhelm C, Mckenna JF, Máthé C, Runions J, Van Damme D, Mathur J (2016) Epidermal pavement cells of Arabidopsis have chloroplasts. Plant Physiol 171(2):723–726

    PubMed  Google Scholar 

  58. Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X (2017) Light deprivation-induced inhibition of chloroplast biogenesis does not arrest embryo morphogenesis but strongly reduces the accumulation of storage reserves during embryo maturation in Arabidopsis. Front Plant Sci 8:1287

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mustárdy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20(10):2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gunning BE, Steer MW (1975) Ultrastructure and the biology of plant cells. Arnold, London

    Google Scholar 

  61. Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31(1):131–148

    Article  Google Scholar 

  62. Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    Article  CAS  PubMed  Google Scholar 

  63. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    Article  CAS  PubMed  Google Scholar 

  64. Thomson W, Whatley JM (1980) Development of nongreen plastids. Annu Rev Plant Physiol 31(1):375–394

    Article  Google Scholar 

  65. Newcomb EH (1967) Fine structure of protein-storing plastids in bean root tips. J Cell Biol 33(1):143–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juneau P, Le Lay P, Böddi B, Samson G, Popovic R (2002) Relationship between the structural and functional changes of the photosynthetic apparatus during chloroplast–chromoplast transition in flower bud of Lilium longiflorum. Photochem Photobiol 75(4):377–381

    Article  CAS  PubMed  Google Scholar 

  67. Devidé Z, Ljubešić N (1974) The reversion of chromoplasts to chloroplasts in pumpkin fruits. Z Pflanzenphysiol 73(4):296–306

    Article  Google Scholar 

  68. Grönegress P (1971) The greening of chromoplasts in Daucus carota L. Planta 98(3):274–278

    Article  PubMed  Google Scholar 

  69. Whatley J (1985) Chromoplasts in some cycads. New Phytol 101(4):595–604

    Article  Google Scholar 

  70. Ljubesic N, Wrischer M, Devide Z (1991) Chromoplasts - the last stages in plastid development. Int J Dev Biol 35:251–258

    Google Scholar 

  71. Simpson D, Baqar M, Lee T (1977) Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Z Pflanzenphysiol 83(4):293–308

    Article  CAS  Google Scholar 

  72. Liedvogel B, Sitte P, Falk H (1976) Chromoplasts in the daffodil: fine structure and chemistry. Cytobiologie 12:155–174

    CAS  Google Scholar 

  73. Mulisch M, Krupinska K (2013) Ultrastructural analyses of senescence associated dismantling of chloroplasts revisited. In: Biswal B, Krupinska K, Biswal U (eds) Advances in photosynthesis and respiration, vol 36., Plastid Development In Leaves During Growth and Senescence. Springer, New York, pp 307–335

    Google Scholar 

  74. Solymosi K, Tuba Z, Böddi B (2013) Desiccoplast–etioplast–chloroplast transformation under rehydration of desiccated poikilochlorophyllous Xerophyta humilis leaves in the dark and upon subsequent illumination. J Plant Physiol 170(6):583–590

    Article  CAS  PubMed  Google Scholar 

  75. Ingle, RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N (2008) Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast–chloroplast transition. Plant, Cell and Environment 31: 1813–1824

    Article  CAS  Google Scholar 

  76. Sheue C-R, Sarafis V, Kiew R, Liu H-Y, Salino A, Kuo-Huang L-L, Yang Y-P, Tsai C-C, Lin C-H, Yong JW (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am J Bot 94(12):1922–1929

    Article  PubMed  Google Scholar 

  77. Sheue C-R, Liu J-W, Ho J-F, Yao A-W, Wu Y-H, Das S, Tsai C-C, Chu H-A, Ku MS, Chesson P (2015) A variation on chloroplast development: the bizonoplast and photosynthetic efficiency in the deep-shade plant Selaginella erythropus. Am J Bot 102(4):500–511

    Article  PubMed  Google Scholar 

  78. Jacobs M, Lopez-Garcia M, Phrathep O-P, Lawson T, Oulton R, Whitney HM (2016) Photonic multilayer structure of begonia chloroplasts enhances photosynthetic efficiency. Nat Plants 2:16162

    Article  CAS  PubMed  Google Scholar 

  79. Brillouet J-M, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112(6):1003–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brillouet J-M, Romieu C, Lartaud M, Jublanc E, Torregrosa L, Cazevieille C (2014) Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions. Protoplasma 251(6):1387–1393

    Article  CAS  PubMed  Google Scholar 

  81. Brillouet J-M, Verdeil J-L, Odoux E, Lartaud M, Grisoni M, Conéjéro G (2014) Phenol homeostasis is ensured in vanilla fruit by storage under solid form in a new chloroplast-derived organelle, the phenyloplast. J Exp Bot 65(9):2427–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter is dedicated to Professor Győző Garab (Biological Research Centre, Szeged, Hungary) on the occasion of his 70th birthday. The authors are grateful to Csilla Jónás for transmission electron microscopic sample preparation and to Jean-Marc Brillouet (SupAgro, Montpellier, France) for providing micrographs about tannoplast and phenyloplast. This work was supported by Carl Tryggers Foundation (to H.A.), and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities (to K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Aronsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solymosi, K., Lethin, J., Aronsson, H. (2018). Diversity and Plasticity of Plastids in Land Plants. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics