Skip to main content

AT_CHLORO: The First Step When Looking for Information About Subplastidial Localization of Proteins

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1829))

Abstract

Plastids contain several key subcompartments. The two limiting envelope membranes (inner and outer membrane of the plastid envelope with an intermembrane space between), an aqueous phase (stroma), and an internal membrane system terms (thylakoids) formed of flat compressed vesicles (grana) and more light structures (lamellae). The thylakoid vesicles delimit another discrete soluble compartment, the thylakoid lumen. AT_CHLORO (http://at-chloro.prabi.fr/at_chloro/) is a unique database supplying information about the subplastidial localization of proteins. It was created from simultaneous proteomic analyses targeted to the main subcompartments of the chloroplast from Arabidopsis thaliana (i.e., envelope, stroma, thylakoid) and to the two subdomains of thylakoid membranes (i.e., grana and stroma lamellae). AT_CHLORO assembles several complementary information (MS-based experimental data, curated functional annotations and subplastidial localization, links to other public databases and references) which give a comprehensive overview of the current knowledge about the subplastidial localization and the function of chloroplast proteins, with a specific attention given to chloroplast envelope proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol 6(4):a016105

    Article  CAS  Google Scholar 

  2. Martin W, Rujan T, Richly E et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99(19):12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    Article  CAS  PubMed  Google Scholar 

  4. Ferro M, Brugière S, Salvi D, Seigneurin-Berny D et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rolland N, Curien G, Finazzi G et al (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 46:233–264

    Article  CAS  PubMed  Google Scholar 

  6. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  8. Agrawal GK, Bourguignon J, Rolland N et al (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853

    PubMed  CAS  Google Scholar 

  9. Kleffmann T, Hirsch-Hoffmann M, Gruissem W et al (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    Article  CAS  PubMed  Google Scholar 

  10. Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37(Database issue): D969–D974

    Article  CAS  PubMed  Google Scholar 

  11. Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270

    Article  CAS  PubMed  Google Scholar 

  12. Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35(Database issue):D213–D218

    Article  CAS  PubMed  Google Scholar 

  13. Tanz SK, Castleden I, Hooper CM et al (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:1185–1191

    Article  CAS  Google Scholar 

  14. Hooper CM, Castleden IR, Tanz SK et al (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45(D1):D1064–D1074

    Article  CAS  PubMed  Google Scholar 

  15. Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front Plant Sci 3:205

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tomizioli M, Lazar C, Brugière S et al (2014) Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 13(8):2147–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salvi D, Rolland N, Joyard J et al (2008) Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. Methods Mol Biol 432:19–36

    Article  CAS  PubMed  Google Scholar 

  18. Seigneurin-Berny D, Salvi D, Dorne AJ et al (2008) Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol Biochem 46(11):951–955

    Article  CAS  PubMed  Google Scholar 

  19. Salvi D, Moyet L, Seigneurin-Berny D et al (2011) Preparation of envelope membrane fractions from Arabidopsis chloroplasts for proteomic analysis and other studies. Methods Mol Biol 775:189–206

    Article  CAS  PubMed  Google Scholar 

  20. Moyet L, Salvi D, Tomizioli M et al (2018) Preparation of membrane fractions (envelope, thylakoids, grana and stroma lamellae) from Arabidopsis chloroplasts for quantitative proteomic investigations and other studies. Methods Mol Biol 1696:117–136

    Article  PubMed  Google Scholar 

  21. Joyard J, Ferro M, Masselon C et al (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154–1180

    Article  CAS  PubMed  Google Scholar 

  22. Joyard J, Ferro M, Masselon C et al (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158

    Article  CAS  PubMed  Google Scholar 

  23. Gloaguen P, Bournais S, Alban C et al (2017) ChloroKB: a Web application for the integration of knowledge related to chloroplast metabolic network. Plant Physiol 174(2):922–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dell'Aglio E, Giustini C, Salvi D et al (2013) Complementary biochemical approaches applied to the identification of plastidial calmodulin-binding proteins. Mol BioSyst 9(6):1234–1248

    Article  CAS  PubMed  Google Scholar 

  25. Seigneurin-Berny D, Gravot A, Auroy P et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.S., S.B., L.M., I.B., M.K, C.B., and N.R acknowledge support from the ANR project ANR-15-IDEX-02. I.B. is supported by a joint PhD fellowship from the INRA Plant Biology and Breeding Division and from the Labex GRAL (ANR-10-LABX-49-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salvi, D. et al. (2018). AT_CHLORO: The First Step When Looking for Information About Subplastidial Localization of Proteins. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 1829. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8654-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8654-5_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8653-8

  • Online ISBN: 978-1-4939-8654-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics