Skip to main content

Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by a mutation in SMN1 that stops production of SMN (survival of motor neuron) protein. Insufficient levels of SMN results in the loss of motor neurons, which causes muscle weakness, respiratory distress, and paralysis. A nearly identical gene (SMN2) contains a C-to-T transition which excludes exon 7 from 90% of the mature mRNA transcripts, leading to unstable proteins which are targeted for degradation. Although SMN2 cannot fully compensate for a loss of SMN1 due to only 10% functional mRNA produced, the discovery of the intronic splicing silencer (ISS-N1) opened a doorway for therapy. By blocking its function with antisense oligonucleotides manipulated for high specificity and efficiency, exon 7 can be included to produce full-length mRNA, which then compensates for the loss of SMN1. Nusinersen (Spinraza), the first FDA-approved antisense oligonucleotide drug targeting SMA, was designed based on this concept and clinical studies have demonstrated a dramatic improvement in patients. Novel chemistries including phosphorodiamidate morpholino oligomers (PMOs) and locked nucleic acids (LNAs), as well as peptide conjugates such as Pip that facilitate accurate targeting to the central nervous system, are explored to increase the efficiency of exon 7 inclusion in the appropriate tissues to ameliorate the SMA phenotype. Due to the rapid advancement of treatments for SMA following the discovery of ISS-N1, the future of SMA treatment is highly promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolb SJ, Kissel JT (2011) Spinal muscular atrophy: a timely review. Arch Neurol 68(8):979–984. https://doi.org/10.1001/archneurol.2011.74

    Article  PubMed  Google Scholar 

  2. Lunn MR, Wang CH (2008) Spinal muscular atrophy. Lancet 371(9630):2120–2133. https://doi.org/10.1016/S0140-6736(08)60921-6

    Article  PubMed  Google Scholar 

  3. Oskoui M, Kaufmann P (1993) Spinal muscular atrophy. Neurotherapeutics 5(October):499–506

    Google Scholar 

  4. Li DK, Tisdale S, Lotti F et al (2014) SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 32:22–29. https://doi.org/10.1016/j.semcdb.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  5. DiDonato CJ, Parks RJ, Kothary R (2003) Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 14(2):179–188. https://doi.org/10.1089/104303403321070874

    Article  CAS  PubMed  Google Scholar 

  6. Zhou H, Meng J, Marrosu E et al (2015) Repeated low doses of morpholino antisense oligomer: an intermediate mouse model of spinal muscular atrophy to explore the window of therapeutic response. Hum Mol Genet 24(22):6265–6277. https://doi.org/10.1093/hmg/ddv329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wertz MH, Sahin M (2016) Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 1366(1):5–19. https://doi.org/10.1111/nyas.12813

    Article  PubMed  Google Scholar 

  8. Singh NK, Singh NN, Androphy EJ et al (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346. https://doi.org/10.1128/MCB.26.4.1333-1346.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh NN, Shishimorova M, Cao LC et al (2009) A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 6(3):341–350

    Article  CAS  PubMed  Google Scholar 

  10. Singh NN, Howell MD, Androphy EJ et al (2017) How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 24(9):520–526. https://doi.org/10.1038/gt.2017.34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aartsma-Rus A (2017) FDA approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides. Nucleic Acid Ther 27(2):67–69. https://doi.org/10.1089/nat.2017.0665

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh-Li HM, Chang JG, Jong YJ et al (2000) A mouse model for spinal muscular atrophy. Nat Genet 24(1):66–70. https://doi.org/10.1038/71709

    Article  CAS  PubMed  Google Scholar 

  13. Schrank B, Gotz R, Gunnersen JM et al (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94(18):9920–9925. https://doi.org/10.1073/pnas.94.18.9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hua Y, Sahashi K, Hung G et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24(15):1634–1644. https://doi.org/10.1101/gad.1941310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burghes AH, McGovern VL (2010) Antisense oligonucleotides and spinal muscular atrophy: skipping along. Genes Dev 24(15):1574–1579. https://doi.org/10.1101/gad.1961710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. https://doi.org/10.1517/14712598.2014.896335

    Article  CAS  PubMed  Google Scholar 

  17. Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3(72):72ra18. https://doi.org/10.1126/scitranslmed.3001777

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nizzardo M, Simone C, Dametti S et al (2015) Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via different novel RNA therapeutic approaches. Sci Rep 5(May):11746. https://doi.org/10.1038/srep11746

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sardone V, Zhou H, Muntoni F et al (2017) Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules 22(4):E563. https://doi.org/10.3390/molecules22040563

    Article  PubMed  Google Scholar 

  21. Porensky PN, Mitrpant C, McGovern VL et al (2012) A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 21(7):1625–1638. https://doi.org/10.1093/hmg/ddr600

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Janghra N, Mitrpant C et al (2013) A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum Gene Ther 24(3):331–342. https://doi.org/10.1089/hum.2012.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187. https://doi.org/10.1093/nar/gku512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8(1):1–7

    Article  CAS  PubMed  Google Scholar 

  25. Touznik A, Maruyama R, Hosoki K et al (2017) LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 7(1):3672. https://doi.org/10.1038/s41598-017-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maruyama R, Touznik A, Yokota T (2018) Evaluation of exon inclusion induced by splice switching antisense oligonucleotides in SMA patients fibroblasts. J Vis Exp (135). https://doi.org/10.3791/57530

  27. Hache M, Swoboda KJ, Sethna N et al (2016) Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child Neurol 31(7):899–906. https://doi.org/10.1177/0883073815627882

    Article  PubMed  PubMed Central  Google Scholar 

  28. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218. https://doi.org/10.1073/pnas.1613203114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hua Y, Liu YH, Sahashi K et al (2015) Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev 29(3):288–297. https://doi.org/10.1101/gad.256644.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hua Y, Sahashi K, Rigo F et al (2011) Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478(7367):123–126. https://doi.org/10.1038/nature10485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967. https://doi.org/10.1073/pnas.1605731113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jarecki J, Chen X, Bernardino A et al (2005) Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet 14(14):2003–2018. https://doi.org/10.1093/hmg/ddi205

    Article  CAS  PubMed  Google Scholar 

  33. Andreassi C, Jarecki J, Zhou J et al (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10(24):2841–2849. https://doi.org/10.1093/hmg/10.24.2841

    Article  CAS  PubMed  Google Scholar 

  34. Chang JG, Hsieh-Li HM, Jong YJ et al (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A 98(17):9808–9813. https://doi.org/10.1073/pnas.171105098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ottesen EW (2017) ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci 8(1):1–6. https://doi.org/10.1515/tnsci-2017-0001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoy SM (2017) Nusinersen: first global approval. Drugs 77(4):473–479. https://doi.org/10.1007/s40265-017-0711-7

    Article  CAS  PubMed  Google Scholar 

  37. Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Finkel RS, Chiriboga CA, Vajsar J et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388(10063):3017–3026. https://doi.org/10.1016/S0140-6736(16)31408-8

    Article  CAS  PubMed  Google Scholar 

  39. TR. Collins(2017) News from the AAN annual meeting: In Phase 3 results, infants on nusinersen survive longer, achieve motor milestones, vol 17. doi:https://doi.org/10.1097/01.NT.0000520478.96062.ee

    Article  Google Scholar 

  40. Hussar DA, Douglas DK (2003) Plecanatide, nusinersen, and obeticholic acid. J Am Pharm Assoc 57(3):416–418. https://doi.org/10.1016/j.japh.2017.04.006

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Alberta Faculty of Medicine and Dentistry, Slipchuk SMA Research Foundation Research Grant, the Canadian Institutes of Health Research (CIHR), the Friends of Garrett Cumming Research Funds, HM Toupin Neurological Science Research Funds, the Muscular Dystrophy Canada, the Canada Foundation for Innovation, Alberta Enterprise and Advanced Education, and the Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Son, HW., Yokota, T. (2018). Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics