Skip to main content

Optimization of 2′,4′-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Antisense oligonucleotide-mediated splicing modulation is an attractive strategy for treating genetic disorders. In 2016, two splice-switching oligonucleotides (SSOs) were approved by the FDA. To date, various types of novel artificial nucleic acids have been developed, and their potential for splicing modulations has been demonstrated. To apply these novel chemistries to SSOs, it is necessary to determine the appropriate design for each artificial nucleic acid such as the length of the SSO and number of modifications. In this protocol, we focus on SSOs modified with 2′-O,4′-methylene-bridged nucleic acid (2′,4′-BNA)/locked nucleic acid (LNA), which is an artificial nucleic acid that shows extremely high binding affinity to target RNA strands. We describe our typical protocol for the optimization of 2′,4′-BNA-based SSOs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90(18):8673–8677

    Article  CAS  Google Scholar 

  2. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther 25(5):1069–1075. https://doi.org/10.1016/j.ymthe.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamamoto T, Nakatani M, Narukawa K et al (2011) Antisense drug discovery and development. Future Med Chem 3(3):339–365. https://doi.org/10.4155/fmc.11.2

    Article  CAS  PubMed  Google Scholar 

  4. Aartsma-Rus A, Bremmer-Bout M, Janson AAM et al (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12:S71–S77. https://doi.org/10.1016/s0960-8966(02)00086-x

    Article  PubMed  Google Scholar 

  5. Aartsma-Rus A (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12(8):907–914. https://doi.org/10.1093/hmg/ddg100

    Article  CAS  PubMed  Google Scholar 

  6. Shimo T, Tachibana K, Saito K et al (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187. https://doi.org/10.1093/nar/gku512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Masaki Y, Inde T, Nagata T et al (2015) Enhancement of exon skipping in mdx52 mice by 2′-O-methyl-2-thioribothymidine incorporation into phosphorothioate oligonucleotides. Med Chem Commun 6(4):630–633. https://doi.org/10.1039/c4md00468j

    Article  CAS  Google Scholar 

  8. Le BT, Chen S, Abramov M et al (2016) Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2'-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro. Chem Commun (Camb) 52(92):13467–13470. https://doi.org/10.1039/c6cc07447b

    Article  CAS  Google Scholar 

  9. Le BT, Murayama K, Shabanpoor F et al (2017) Antisense oligonucleotide modified with serinol nucleic acid (SNA) induces exon skipping in mdx myotubes. RSC Adv 7(54):34049–34052. https://doi.org/10.1039/c7ra06091b

    Article  CAS  Google Scholar 

  10. Aartsma-Rus A, van Vliet L, Hirschi M et al (2009) Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17(3):548–553. https://doi.org/10.1038/mt.2008.205

    Article  CAS  PubMed  Google Scholar 

  11. Takeshima Y, Yagi M, Matsuo M (2012) Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing. Methods Mol Biol 867:131–141. https://doi.org/10.1007/978-1-61779-767-5_9

    Article  CAS  PubMed  Google Scholar 

  12. Popplewell LJ, Malerba A, Dickson G (2012) Optimizing antisense oligonucleotides using phosphorodiamidate morpholino oligomers. Methods Mol Biol 867:143–167. https://doi.org/10.1007/978-1-61779-767-5_10

    Article  CAS  PubMed  Google Scholar 

  13. Adkin C, Fletcher S, Wilton SD (2012) Optimizing splice-switching oligomer sequences using 2'-O-methyl phosphorothioate chemistry. Methods Mol Biol 867:169–188. https://doi.org/10.1007/978-1-61779-767-5_11

    Article  CAS  PubMed  Google Scholar 

  14. Disterer P, Kryczka A, Liu Y et al (2014) Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 25(7):587–598. https://doi.org/10.1089/hum.2013.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Obika S, Nanbu D, Hari Y et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, −endo sugar puckering. Tetrahedron Lett 38(50):8735–8738. https://doi.org/10.1016/s0040-4039(97)10322-7

    Article  CAS  Google Scholar 

  16. Singh SK, Koshkin AA, Wengel J et al (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 29(4):455–456. https://doi.org/10.1039/a708608c

    Article  Google Scholar 

  17. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97(10):5633–5638

    Article  CAS  Google Scholar 

  18. Schmidt KS, Borkowski S, Kurreck J et al (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765. https://doi.org/10.1093/nar/gkh862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauppinen S, Vester B, Wengel J (2005) Locked nucleic acid (LNA): high affinity targeting of RNA for diagnostics and therapeutics. Drug Discov Today Technol 2(3):287–290. https://doi.org/10.1016/j.ddtec.2005.08.012

    Article  PubMed  Google Scholar 

  20. Mook OR, Baas F, de Wissel MB et al (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6(3):833–843. https://doi.org/10.1158/1535-7163.MCT-06-0195

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Roccaro AM, Rombaoa C et al (2012) LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood 120(8):1678–1686. https://doi.org/10.1182/blood-2012-02-410647

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto T, Obika S, Nakatani M et al (2014) Locked nucleic acid antisense inhibitor targeting apolipoprotein C-III efficiently and preferentially removes triglyceride from large very low-density lipoprotein particles in murine plasma. Eur J Pharmacol 723:353–359. https://doi.org/10.1016/j.ejphar.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  23. Touznik A, Maruyama R, Hosoki K et al (2017) LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 7(1):3672. https://doi.org/10.1038/s41598-017-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roberts J, Palma E, Sazani P et al (2006) Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 14(4):471–475. https://doi.org/10.1016/j.ymthe.2006.05.017

    Article  CAS  PubMed  Google Scholar 

  25. Jarver P, O'Donovan L, Gait MJ (2014) A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther 24(1):37–47. https://doi.org/10.1089/nat.2013.0454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guterstam P, Lindgren M, Johansson H et al (2008) Splice-switching efficiency and specificity for oligonucleotides with locked nucleic acid monomers. Biochem J 412(2):307–313. https://doi.org/10.1042/BJ20080013

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz-Elis AS, Aartsma-Rus A, t Hoen PA et al (2013) Inhibition of IL-1 Signaling by antisense oligonucleotide-mediated exon skipping of IL-1 receptor accessory protein (IL-1RAcP). Mol Ther Nucleic Acids e66:2. https://doi.org/10.1038/mtna.2012.58

    Article  CAS  Google Scholar 

  28. Le BT, Adams AM, Fletcher S et al (2017) Rational Design of Short Locked Nucleic Acid-Modified 2′-O-methyl antisense oligonucleotides for efficient exon-skipping in vitro. Mol Ther Nucleic Acids 9:155–161. https://doi.org/10.1016/j.omtn.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res 32(1):e13. https://doi.org/10.1093/nar/gnh015

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu S, Wang J, Su Y et al (2013) Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic Acids Res 41(13):6421–6429. https://doi.org/10.1093/nar/gkt360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18(12):1111–1120. https://doi.org/10.1038/gt.2011.100

    Article  CAS  PubMed  Google Scholar 

  32. Echigoya Y, Mouly V, Garcia L et al (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One 10(3):e0120058. https://doi.org/10.1371/journal.pone.0120058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther 25(11):2561–2572. https://doi.org/10.1016/j.ymthe.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akhtar S, Kole R, Juliano RL (1991) Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 49(24):1793–1801

    Article  CAS  Google Scholar 

  35. Kurreck J, Wyszko E, Gillen C et al (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30(9):1911–1918

    Article  CAS  Google Scholar 

  36. Yoshida M, Kataoka N, Miyauchi K et al (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci U S A 112(9):2764–2769. https://doi.org/10.1073/pnas.1415525112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T.S. was supported by Grant-in-Aid for JSPS Research Fellow Grant Number 15 J05689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Obika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shimo, T., Obika, S. (2018). Optimization of 2′,4′-BNA/LNA-Based Oligonucleotides for Splicing Modulation In Vitro. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics