Skip to main content

A Novel Zebrafish Model for Assessing In Vivo Delivery of Morpholino Oligomers

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Morpholino oligomers have great therapeutic potential for treatment of a broad range of human diseases, including viral, bacterial, age-related, and genetic diseases, but they suffer from poor systemic delivery into cells. Although various approaches have been undertaken to address the delivery problem, it remains as the major barrier of morpholinos to be used as effective therapeutics. This slow development is in part due to the cost of materials and the animal models used for screening the efficacy and safety of those delivery approaches. The need to have an inexpensive vertebrate model for assessing in vivo delivery of morpholinos is evident. Therefore, we have produced a novel transgenic zebrafish model containing a dual reporter cassette for determination of in vivo delivery, bio-distribution, and safety of a morpholino. The levels of morpholino delivered to the cells in various tissues can be determined by changes in reporter gene expressions caused by morpholino-induced exon skipping. This chapter provides a description of the reagents, equipment, and procedure for successful retro-orbital injection of a peptide-conjugated morpholino into the blood stream of the adult zebrafish to cause targeted exon skipping in the heart of the zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489(1):141–158

    Article  CAS  Google Scholar 

  2. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–195. https://doi.org/10.1089/oli.1.1997.7.187

    Article  CAS  PubMed  Google Scholar 

  3. Ekker SC (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17(4):302–306. https://doi.org/10.1002/1097-0061(200012)17:4<302::AID-YEA53>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  4. Klee EW, Shim KJ, Pickart MA et al (2005) AMOD: a morpholino oligonucleotide selection tool. Nucleic Acids Res 33(Web Server issue):W506–W511. https://doi.org/10.1093/nar/gki453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nasevicius A, Ekker SC (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26(2):216–220. https://doi.org/10.1038/79951

    Article  CAS  PubMed  Google Scholar 

  6. O'Donnell EF, Saili KS, Koch DC et al (2010) The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. PLoS One 5(10):e13128. https://doi.org/10.1371/journal.pone.0013128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moulton HM, Moulton JD (2010) Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 1798(12):2296–2303. https://doi.org/10.1016/j.bbamem.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  8. Moulton HM, Hase MC, Smith KM et al (2003) HIV tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev 13(1):31–43. https://doi.org/10.1089/108729003764097322

    Article  CAS  PubMed  Google Scholar 

  9. Moulton HM, Nelson MH, Hatlevig SA et al (2004) Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem 15(2):290–299. https://doi.org/10.1021/bc034221g

    Article  CAS  PubMed  Google Scholar 

  10. Wu RP, Youngblood DS, Hassinger JN et al (2007) Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res 35(15):5182–5191. https://doi.org/10.1093/nar/gkm478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Youngblood DS, Hatlevig SA, Hassinger JN et al (2007) Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjug Chem 18(1):50–60. https://doi.org/10.1021/bc060138s

    Article  CAS  PubMed  Google Scholar 

  12. Wu B, Moulton HM, Iversen PL et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A 105(39):14814–14819. https://doi.org/10.1073/pnas.0805676105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yin H, Moulton HM, Seow Y et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17(24):3909–3918. https://doi.org/10.1093/hmg/ddn293

    Article  CAS  PubMed  Google Scholar 

  14. Billiard SM, Timme-Laragy AR, Wassenberg DM et al (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92(2):526–536. https://doi.org/10.1093/toxsci/kfl011

    Article  CAS  Google Scholar 

  15. Timme-Laragy AR, Van Tiem LA, Linney EA et al (2009) Antioxidant responses and NRF2 in synergistic developmental toxicity of PAHs in zebrafish. Toxicol Sci 109(2):217–227. https://doi.org/10.1093/toxsci/kfp038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zodrow JM, Stegeman JJ, Tanguay RL (2004) Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish. Aquat Toxicol 66(1):25–38

    Article  CAS  Google Scholar 

  17. Pugach EK, Li P, White R et al (2009) Retro-orbital injection in adult zebrafish. J Vis Exp 34:pii: 1645. https://doi.org/10.3791/1645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Moulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, J., Clark, K., Barton, C., Tanguay, R., Moulton, H. (2018). A Novel Zebrafish Model for Assessing In Vivo Delivery of Morpholino Oligomers. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics