Skip to main content

In Vivo Evaluation of Single-Exon and Multiexon Skipping in mdx52 Mice

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Abstract

Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (ASOs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Phosphorodiamidate morpholino oligomer (PMO) is one of the safest among therapeutic ASOs for patients and has recently been approved under the accelerated approval program by the US Food and Drug Administration (FDA) as the first ASO-based drug for Duchenne muscular dystrophy (DMD). Multi-exon skipping utilizing ASOs can theoretically treat 80–90% of patients with DMD. Here, we describe the systemic delivery of a cocktail of ASOs to skip exon 51 and exons 45–55 in the mdx52 mouse, an exon 52 deletion model of DMD produced by gene targeting, and the evaluation of their efficacies in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman EP, Brown RH Jr, Kunkel LM et al (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928

    Article  CAS  Google Scholar 

  2. Flanigan KM (2014) Duchenne and Becker muscular dystrophies. Neurol Clin 32(3):671–688. https://doi.org/10.1016/j.ncl.2014.05.002viii

    Article  PubMed  Google Scholar 

  3. Arora V, Devi GR, Iversen PL (2004) Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 5(5):431–439

    Article  CAS  Google Scholar 

  4. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  5. Yokota T, Lu QL, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. https://doi.org/10.1002/ana.21627

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7(13):1631–1635. https://doi.org/10.4155/fmc.15.116

    Article  CAS  PubMed  Google Scholar 

  7. Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. https://doi.org/10.1517/14712598.2014.896335

    Article  CAS  PubMed  Google Scholar 

  8. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12(12):675–676. https://doi.org/10.1038/nrneurol.2016.180

    Article  CAS  PubMed  Google Scholar 

  9. Sicinski P, Geng Y, Ryder-Cook AS et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580

    Article  CAS  Google Scholar 

  10. Aartsma-Rus A, Van Deutekom JC, Fokkema IF et al (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144. https://doi.org/10.1002/mus.20586

    Article  CAS  PubMed  Google Scholar 

  11. Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299. https://doi.org/10.1002/humu.20918

    Article  PubMed  Google Scholar 

  12. Araki E, Nakamura K, Nakao K et al (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238(2):492–497. https://doi.org/10.1006/bbrc.1997.7328

    Article  CAS  PubMed  Google Scholar 

  13. Aoki Y, Nagata T, Yokota T et al (2013) Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-alpha2 chain-null congenital muscular dystrophy mice. Hum Mol Gen 22(24):4914–4928. https://doi.org/10.1093/hmg/ddt341

    Article  CAS  PubMed  Google Scholar 

  14. Aoki Y, Nakamura A, Yokota T et al (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52–deficient mdx mouse. Mol Ther 18(11):1995–2005. https://doi.org/10.1038/mt.2010.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kameya S, Araki E, Katsuki M et al (1997) Dp260 disrupted mice revealed prolonged implicit time of the b-wave in ERG and loss of accumulation of beta-dystroglycan in the outer plexiform layer of the retina. Hum Mol Gen 6(13):2195–2203

    Article  CAS  Google Scholar 

  16. Prior TW, Bartolo C, Pearl DK et al (1995) Spectrum of small mutations in the dystrophin coding region. Am J Hum Gen 57(1):22–33

    Article  CAS  Google Scholar 

  17. Nakamura A, Shiba N, Miyazaki D et al (2017) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Gen 62(4):459–463. https://doi.org/10.1038/jhg.2016.152

    Article  CAS  Google Scholar 

  18. Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68. https://doi.org/10.1089/nat.2013.0451

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura A, Yoshida K, Fukushima K et al (2008) Follow-up of three patients with a large in-frame deletion of exons 45–55 in the Duchenne muscular dystrophy (DMD) gene. J Clin Neurosci 15(7):757–763

    Article  CAS  Google Scholar 

  20. Echigoya Y, Aoki Y, Miskew B et al (2015) Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45–55 with a cocktail of vivo-morpholinos in mdx52 mice. Mol Ther Nucleic Acids 4:e225. https://doi.org/10.1038/mtna.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aoki Y, Yokota T, Nagata T et al (2012) Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. https://doi.org/10.1073/pnas.1204638109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aartsma-Rus A, Krieg AM (2017) FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 27(1):1–3. https://doi.org/10.1089/nat.2016.0657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Railroading at the FDA (2016) Nat Biotechnol 34(11):1078. https://doi.org/10.1038/nbt.3733

    Article  CAS  Google Scholar 

  24. Godfrey C, Muses S, McClorey G et al (2015) How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse. Hum Mol Genet 24(15):4225–4237. https://doi.org/10.1093/hmg/ddv155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Agency for Medical Research and Development (AMED) (17ek0109154h0003, 17am0301021h0003, 17ek0109239h0001). We thank Dr. Rika Maruyama for scientific advice and Dr. Motoya Katsuki for the production of mdx52 mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitsugu Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mizobe, Y. et al. (2018). In Vivo Evaluation of Single-Exon and Multiexon Skipping in mdx52 Mice. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics