Skip to main content

A Streamlined Approach for the Construction of Large Yeast Surface Display Fab Antibody Libraries

  • Protocol
  • First Online:
Antibody Engineering

Abstract

Yeast surface display is a versatile platform technology for antibody discovery. Nevertheless, the construction of antibody Fab libraries typically is a tedious multistep process that involves the generation of heavy chain as well as light chain display plasmids in different haploid yeast strains followed by yeast mating. Here, we present a focused one-step Golden Gate cloning approach for the generation of yeast surface display Fab libraries that allows for simultaneous introduction of heavy-chain and light-chain variable regions into one single display vector. Thereby, the overall time as well as the materials needed for library generation can be reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557. https://doi.org/10.1038/nbt0697-553

    Article  PubMed  CAS  Google Scholar 

  2. Krah S, Schroter C, Eller C, Rhiel L, Rasche N, Beck J, Sellmann C, Gunther R, Toleikis L, Hock B, Kolmar H, Becker S (2017) Generation of human bispecific common light chain antibodies by combining animal immunization and yeast display. Protein Eng Des Sel 30(4):291–301. https://doi.org/10.1093/protein/gzw077

    Article  PubMed  CAS  Google Scholar 

  3. Schroter C, Gunther R, Rhiel L, Becker S, Toleikis L, Doerner A, Becker J, Schonemann A, Nasu D, Neuteboom B, Kolmar H, Hock B (2015) A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. MAbs 7(1):138–151. https://doi.org/10.4161/19420862.2014.985993

    Article  PubMed  CAS  Google Scholar 

  4. Wang B, Lee CH, Johnson EL, Kluwe CA, Cunningham JC, Tanno H, Crooks RM, Georgiou G, Ellington AD (2016) Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals. MAbs 8(6):1035–1044. https://doi.org/10.1080/19420862.2016.1190059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564(1–2):24–34. https://doi.org/10.1016/s0014-5793(04)00309-6

    Article  PubMed  CAS  Google Scholar 

  6. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170. https://doi.org/10.1038/nbt785

    Article  PubMed  CAS  Google Scholar 

  7. Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schafer E, Steinmann B, Empting M, Ockelmann P, Lierz M, Kolmar H (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245. https://doi.org/10.1016/j.jbiotec.2014.04.023

    Article  PubMed  CAS  Google Scholar 

  8. Konning D, Zielonka S, Sellmann C, Schroter C, Grzeschik J, Becker S, Kolmar H (2016) Isolation of a pH-sensitive IgNAR variable domain from a yeast-displayed, histidine-doped master library. Mar Biotechnol (NY) 18(2):161–167. https://doi.org/10.1007/s10126-016-9690-z

    Article  CAS  Google Scholar 

  9. Konning D, Rhiel L, Empting M (2017) Semi-synthetic vNAR libraries screened against therapeutic antibodies primarily deliver anti-idiotypic binders. Sci Rep 7(1):9676. https://doi.org/10.1038/s41598-017-10513-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boersma YL, Chao G, Steiner D, Wittrup KD, Pluckthun A (2011) Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem 286(48):41273–41285. https://doi.org/10.1074/jbc.M111.293266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tasumi S, Velikovsky CA, Xu G, Gai SA, Wittrup KD, Flajnik MF, Mariuzza RA, Pancer Z (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106(31):12891–12896. https://doi.org/10.1073/pnas.0904443106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wozniak-Knopp G, Bartl S, Bauer A, Mostageer M, Woisetschlager M, Antes B, Ettl K, Kainer M, Weberhofer G, Wiederkum S, Himmler G, Mudde GC, Ruker F (2010) Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Eng Des Sel 23(4):289–297. https://doi.org/10.1093/protein/gzq005

    Article  PubMed  CAS  Google Scholar 

  13. Grzeschik J, Hinz SC, Konning D, Pirzer T, Becker S, Zielonka S, Kolmar H (2017) A simplified procedure for antibody engineering by yeast surface display: coupling display levels and target binding by ribosomal skipping. Biotechnol J 12(2). https://doi.org/10.1002/biot.201600454

  14. Doerner A, Rhiel L, Zielonka S, Kolmar H (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588(2):278–287. https://doi.org/10.1016/j.febslet.2013.11.025

    Article  PubMed  CAS  Google Scholar 

  15. Min WK, Kim SG, Seo JH (2015) Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display. Food Chem 188:604–611. https://doi.org/10.1016/j.foodchem.2015.04.117

    Article  PubMed  CAS  Google Scholar 

  16. Yu X, Qu L, Bigner DD, Chandramohan V (2017) Selection of novel affinity-matured human chondroitin sulfate proteoglycan 4 antibody fragments by yeast display. Protein Eng Des Sel 30:639–647. https://doi.org/10.1093/protein/gzx038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  18. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304(1–2):30–42. https://doi.org/10.1016/j.jim.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  19. Rosowski S, Becker S, Toleikis L, Valldorf B, Grzeschik J, Demir D, Willenbücher I, Gaa R, Kolmar H, Zielonka S, Krah S (2018) A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microbial Cell Factories 17(1)

    Google Scholar 

  20. Sivelle C, Sierocki R, Ferreira-Pinto K, Simon S, Maillere B, Nozach H (2018) Fab is the most efficient format to express functional antibodies by yeast surface display. mAbs:1-10

    Google Scholar 

  21. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee JH, Skowron PM, Rutkowska SM, Hong SS, Kim SC (1996) Sequential amplification of cloned DNA as tandem multimers using class-IIS restriction enzymes. Genet Anal 13(6):139–145

    Article  CAS  PubMed  Google Scholar 

  23. Padgett KA, Sorge JA (1996) Creating seamless junctions independent of restriction sites in PCR cloning. Gene 168(1):31–35

    Article  CAS  PubMed  Google Scholar 

  24. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553. https://doi.org/10.1371/journal.pone.0005553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wu D, Schandry N, Lahaye T (2017) A modular toolbox for Golden-Gate-based plasmid assembly streamlines generation of Ralstonia solanacearum species complex knockout strains and multi-cassette complementation constructs. Mol Plant Pathol 19:1511–1522. https://doi.org/10.1111/mpp.12632

    Article  CAS  Google Scholar 

  26. Engler C, Youles M, Gruetzner R, Ehnert TM, Werner S, Jones JD, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843. https://doi.org/10.1021/sb4001504

    Article  PubMed  CAS  Google Scholar 

  27. Luo Y, Lin L, Bolund L, Sorensen CB (2014) Efficient construction of rAAV-based gene targeting vectors by Golden Gate cloning. BioTechniques 56(5):263–268. https://doi.org/10.2144/000114169

    Article  PubMed  CAS  Google Scholar 

  28. Kiriya K, Tsuyuzaki H, Sato M (2017) Module-based systematic construction of plasmids for episomal gene expression in fission yeast. Gene 637:14–24. https://doi.org/10.1016/j.gene.2017.09.030

    Article  PubMed  CAS  Google Scholar 

  29. Celinska E, Ledesma-Amaro R, Larroude M, Rossignol T, Pauthenier C, Nicaud JM (2017) Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microb Biotechnol 10(2):450–455. https://doi.org/10.1111/1751-7915.12605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Coren LV, Jain S, Trivett MT, Ohlen C, Ott DE (2015) Production of retroviral constructs for effective transfer and expression of T-cell receptor genes using Golden Gate cloning. BioTechniques 58(3):135–139. https://doi.org/10.2144/000114265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Rakestraw JA, Sazinsky SL, Piatesi A, Antipov E, Wittrup KD (2009) Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng 103(6):1192–1201. https://doi.org/10.1002/bit.22338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kugler J, Wilke S, Meier D, Tomszak F, Frenzel A, Schirrmann T, Dubel S, Garritsen H, Hock B, Toleikis L, Schutte M, Hust M (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10. https://doi.org/10.1186/s12896-015-0125-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23(4):155–159. https://doi.org/10.1093/protein/gzq002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zielonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krah, S. et al. (2018). A Streamlined Approach for the Construction of Large Yeast Surface Display Fab Antibody Libraries. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics