Skip to main content

Site-Specific Radioactive Labeling of Nanobodies

  • Protocol
  • First Online:
Antibody Engineering

Abstract

Single-domain antibody fragments, also called nanobodies (Nbs), are increasingly being used as targeting molecular tools for imaging and/or targeted radionuclide therapy. To translate these tools to the clinic, it is preferred to obtain a homogeneous, well-defined, and well-characterized product. It has been shown that Sortase A, a transpeptidase found in Staphylococcus aureus, catalyzes the site-specific conjugation between a recognition oligopeptide (LPXTG, known as sortag) and an oligoglycine functionalized probe. This versatile technique manages to couple various molecular reagents, such as biotin, fluorophores, bifunctional chelators, etc., to the target protein containing the sortag. This chapter focuses on the site-specific coupling of a bifunctional chelator (e.g., CHX-A”-DTPA) to a Nb equipped with a C-terminal sortag. The chelator conjugated to the Nb can be radiolabeled with 111In or 177Lu for SPECT imaging or targeted radionuclide therapy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, Muyldermans S, Lahoutte T, Caveliers V (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446. https://doi.org/10.1096/fj.10-180331

    Article  PubMed  CAS  Google Scholar 

  2. Vaneycken I, D’Hhuyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, Caveliers V, Lahoutte T (2011) Immuno-imaging using nanobodies. Curr Opin Biotechnol 22:877–881

    Article  CAS  PubMed  Google Scholar 

  3. Rashidian M, Keliher EJ, Bilate AM, Duarte JN, Wojtkiewicz GR, Jacobsen JT, Cragnolini J, Swee LK, Victoria GD, Weissleder R, Ploegh HL (2015) Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A 112:6146–6151. https://doi.org/10.1073/pnas.1502609112/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1502609112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bannas P, Hambach J, Koch-Nolte F (2017) Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 8:1603. https://doi.org/10.3389/fimmu.2017.01603

    Article  PubMed  PubMed Central  Google Scholar 

  5. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, Vanhoeij M, Duhoux F, Gevaert T, Simon P, Schallier D, Fontaine C, Vaneycken I, Vanhove C, De Greve J, Lamote J, Caveliers V, Lahoutte T (2016) Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2-expression in breast carcinoma. J Nucl Med 57:27–33

    Article  CAS  PubMed  Google Scholar 

  6. Balhuizen A, Massa S, Mathijs I, Turatsinze J-V, De Vos J, Demine S, Xavier C, Villate O, Millard I, Egrise D, Capito C, Scharfmann R, In’t Veld P, Marchetti P, Muyldermans S, Goldman S, Lahoutte T, Bouwens L, Eizirik DL, Devoogdt N (2017) A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Sci Rep 7:15130. https://doi.org/10.1038/s41598-017-15417-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, Bouwens L, Lahoutte T, De Baetselier P, Raes G, Devoogdt N, Van Ginderachter J (2012) A Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–4177. https://doi.org/10.1158/0008-5472.CAN-11-2994

    Article  PubMed  CAS  Google Scholar 

  8. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, Ahmadi M, Thielens N, Wernery U, Caveliers V, Muyldermans S, Lahoutte T, Fagret D, Ghezzi C, Devoogdt N (2012) Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110:927–937. https://doi.org/10.1161/CIRCRESAHA.112.265140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Romao E, Morales-Yanez F, Hu Y, Crauwels M, Pauw P, Hassanzadeh G, Devoogdt N, Ackaert C, Vincke C, Muyldermans S (2016) Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr Pharm Des 22:6500–6518. https://doi.org/10.2174/1381612822666160923114417

    Article  PubMed  CAS  Google Scholar 

  10. Massa S, Xavier C, Muyldermans S, Devoogdt N (2016) Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin Drug Deliv 13:1149. https://doi.org/10.1080/17425247.2016.1178235

    Article  PubMed  CAS  Google Scholar 

  11. Popp MW, Antos JM, Grotenbreg GM, Spooner E, Ploegh HL (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708. https://doi.org/10.1038/nchembio.2007.31

    Article  PubMed  CAS  Google Scholar 

  12. Guimaraes CP, Witte MD, Theile CS, Bozkurt G, Kundrat L, Blom AEM, Ploegh HL (2013) Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat Protoc 8:1787–1799. https://doi.org/10.1038/nprot.2013.101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zell R, Fritz HJ (1987) DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J 6:1809–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43:145–150. https://doi.org/10.1007/s10858-008-9296-5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Muyldermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crauwels, M. et al. (2018). Site-Specific Radioactive Labeling of Nanobodies. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics