Skip to main content

Selection of Antibody Fragments by Yeast Display

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

The critical need for renewable, high-quality affinity reagents in biological research, as well as for diagnostic and therapeutic applications, has required the development of new platforms of discovery. Yeast display is one of the main methods of in vitro display technology with phage display. Yeast display has been chosen by numerous groups to refine both affinity and specificity of antibodies because it enables fine discrimination between mutant clones of similar affinity. In addition, the construction of display libraries of antibody fragments in yeast permits to sample the immune antibody repertoire more fully than using phage. This chapter gives an updated overview of the available systems of yeast display platforms and libraries, followed up by technical descriptions of selection methods of antibody fragments by yeast display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mondon P, Dubreuil O, Bouayadi K, Kharrat H (2008) Human antibody libraries: a race to engineer and explore a larger diversity. Front Biosci 13:1117–1129

    Article  CAS  PubMed  Google Scholar 

  2. Baird CL, Fischer CJ, Pefaur NB, Miller KD, Kagan J, Srivastava S, Rodland KD (2010) Developing recombinant antibodies for biomarker detection. Cancer Biomark 6(5–6):271–279. https://doi.org/10.3233/CBM-2009-0144

    Article  PubMed  CAS  Google Scholar 

  3. Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254. https://doi.org/10.1038/nbt.1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Saeed AF, Wang R, Ling S, Wang S (2017) Antibody engineering for pursuing a healthier future. Front Microbiol 8:495. https://doi.org/10.3389/fmicb.2017.00495

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gould LH, Sui J, Foellmer H, Oliphant T, Wang T, Ledizet M, Murakami A, Noonan K, Lambeth C, Kar K, Anderson JF, de Silva AM, Diamond MS, Koski RA, Marasco WA, Fikrig E (2005) Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus. J Virol 79(23):14606–14613. https://doi.org/10.1128/JVI.79.23.14606-14613.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Oliphant T, Nybakken GE, Engle M, Xu Q, Nelson CA, Sukupolvi-Petty S, Marri A, Lachmi BE, Olshevsky U, Fremont DH, Pierson TC, Diamond MS (2006) Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. J Virol 80(24):12149–12159. https://doi.org/10.1128/JVI.01732-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kalb SR, Garcia-Rodriguez C, Lou J, Baudys J, Smith TJ, Marks JD, Smith LA, Pirkle JL, Barr JR (2010) Extraction of BoNT/A, /B, /E, and /F with a single, high affinity monoclonal antibody for detection of botulinum neurotoxin by Endopep-MS. PLoS One 5(8):e12237. https://doi.org/10.1371/journal.pone.0012237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Borodina I, Jensen BM, Sondergaard I, Poulsen LK (2010) Display of wasp venom allergens on the cell surface of Saccharomyces cerevisiae. Microb Cell Fact 9:74. https://doi.org/10.1186/1475-2859-9-74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108(28):11399–11404. https://doi.org/10.1073/pnas.1101046108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang K, Nelson KM, Bhuripanyo K, Grimes KD, Zhao B, Aldrich CC, Yin J (2013) Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem Biol 20(1):92–101. https://doi.org/10.1016/j.chembiol.2012.10.020

    Article  PubMed  CAS  Google Scholar 

  11. Fushimi T, Miura N, Shintani H, Tsunoda H, Kuroda K, Ueda M (2013) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97(9):4003–4011. https://doi.org/10.1007/s00253-012-4467-4

    Article  PubMed  CAS  Google Scholar 

  12. Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58(3):291–296. https://doi.org/10.1007/s00253-001-0900-9

    Article  PubMed  CAS  Google Scholar 

  13. Abe H, Shimma Y, Jigami Y (2003) In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13(2):87–95. https://doi.org/10.1093/glycob/cwg014

    Article  PubMed  CAS  Google Scholar 

  14. Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392. https://doi.org/10.1016/j.copbio.2007.09.001

    Article  PubMed  CAS  Google Scholar 

  15. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JM, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J, Graff C, Wiley HS, Wittrup KD (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21(2):163–170

    Article  CAS  PubMed  Google Scholar 

  16. Zhao A, Nunez-Cruz S, Li C, Coukos G, Siegel DL, Scholler N (2011) Rapid isolation of high-affinity human antibodies against the tumor vascular marker Endosialin/TEM1, using a paired yeast-display/secretory scFv library platform. J Immunol Methods 363(2):221–232. https://doi.org/10.1016/j.jim.2010.09.001

    Article  PubMed  CAS  Google Scholar 

  17. Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R, Ra HJ, Danet-Desnoyers G, Powell DJ Jr, Scholler N (2013) Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res 73(15):4820–4829. https://doi.org/10.1158/0008-5472.CAN-12-3457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Moore SJ, Cochran JR (2012) Engineering knottins as novel binding agents. Methods Enzymol 503:223–251. https://doi.org/10.1016/B978-0-12-396962-0.00009-4

    Article  PubMed  CAS  Google Scholar 

  19. Koide A, Bailey CW, Huang X, Koide S (1998) The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 284(4):1141–1151. https://doi.org/10.1006/jmbi.1998.2238

    Article  PubMed  CAS  Google Scholar 

  20. Bloom L, Calabro V (2009) FN3: a new protein scaffold reaches the clinic. Drug Discov Today 14(19–20):949–955. https://doi.org/10.1016/j.drudis.2009.06.007

    Article  PubMed  CAS  Google Scholar 

  21. Sha F, Salzman G, Gupta A, Koide S (2017) Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 26(5):910–924. https://doi.org/10.1002/pro.3148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee CH, Park KJ, Sung ES, Kim A, Choi JD, Kim JS, Kim SH, Kwon MH, Kim YS (2010) Engineering of a human kringle domain into agonistic and antagonistic binding proteins functioning in vitro and in vivo. Proc Natl Acad Sci U S A 107(21):9567–9571. https://doi.org/10.1073/pnas.1001541107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW, Song KH, Kim YS (2017) Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun 8:15090. https://doi.org/10.1038/ncomms15090

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gera N, Hussain M, Wright RC, Rao BM (2011) Highly stable binding proteins derived from the hyperthermophilic Sso7d scaffold. J Mol Biol 409(4):601–616. https://doi.org/10.1016/j.jmb.2011.04.020

    Article  PubMed  CAS  Google Scholar 

  25. Gocha T, Rao BM, DasGupta R (2017) Identification and characterization of a novel Sso7d scaffold-based binder against Notch1. Sci Rep 7(1):12021. https://doi.org/10.1038/s41598-017-12246-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6):553–557

    Article  CAS  PubMed  Google Scholar 

  27. VanAntwerp JJ, Wittrup KD (2000) Fine affinity discrimination by yeast surface display and flow cytometry. Biotechnol Prog 16(1):31–37. https://doi.org/10.1021/bp990133s

    Article  PubMed  CAS  Google Scholar 

  28. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peelle BR, Krauland EM, Wittrup KD, Belcher AM (2005) Probing the interface between biomolecules and inorganic materials using yeast surface display and genetic engineering. Acta Biomater 1(2):145–154. https://doi.org/10.1016/j.actbio.2004.11.004

    Article  PubMed  Google Scholar 

  30. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20(2):81–90

    Article  CAS  PubMed  Google Scholar 

  31. Siegel RW (2009) Antibody affinity optimization using yeast cell surface display. Methods Mol Biol 504:351–383. https://doi.org/10.1007/978-1-60327-569-9_20

    Article  PubMed  CAS  Google Scholar 

  32. Cherf GM, Cochran JR (2015) Applications of yeast surface display for protein engineering. Methods Mol Biol 1319:155–175. https://doi.org/10.1007/978-1-4939-2748-7_8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260(3):359–368

    Article  CAS  PubMed  Google Scholar 

  34. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10(11):1303–1310

    Article  CAS  PubMed  Google Scholar 

  35. van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546(2–3):288–294

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Kim GB, Woo JH, Liu YY, Mathias A, Stavrou S, Neville DM Jr (2007) Improvement of a recombinant anti-monkey anti-CD3 diphtheria toxin based immunotoxin by yeast display affinity maturation of the scFv. Bioconjug Chem 18(3):947–955. https://doi.org/10.1021/bc0603438

    Article  PubMed  CAS  Google Scholar 

  37. Chowdhury PS, Wu H (2005) Tailor-made antibody therapeutics. Methods 36(1):11–24. https://doi.org/10.1016/j.ymeth.2005.01.002

    Article  PubMed  CAS  Google Scholar 

  38. Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD (2000) Directed evolution of a stable scaffold for T-cell receptor engineering. Nat Biotechnol 18(7):754–759. https://doi.org/10.1038/77325

    Article  PubMed  CAS  Google Scholar 

  39. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ, Siegel RW (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel 18(11):527–536

    Article  CAS  PubMed  Google Scholar 

  40. Orcutt KD, Slusarczyk AL, Cieslewicz M, Ruiz-Yi B, Bhushan KR, Frangioni JV, Wittrup KD (2011) Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging. Nucl Med Biol 38(2):223–233. https://doi.org/10.1016/j.nucmedbio.2010.08.013

    Article  PubMed  CAS  Google Scholar 

  41. Starwalt SE, Masteller EL, Bluestone JA, Kranz DM (2003) Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  42. Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64(1):28–40. https://doi.org/10.1007/s00253-003-1492-3

    Article  PubMed  CAS  Google Scholar 

  43. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564(1–2):24–34

    Article  CAS  PubMed  Google Scholar 

  44. Lim KH, Madabhushi SR, Mann J, Neelamegham S, Park S (2010) Disulfide trapping of protein complexes on the yeast surface. Biotechnol Bioeng 106(1):27–41. https://doi.org/10.1002/bit.22651

    Article  PubMed  CAS  Google Scholar 

  45. Koide A, Gilbreth RN, Esaki K, Tereshko V, Koide S (2007) High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci U S A 104(16):6632–6637. https://doi.org/10.1073/pnas.0700149104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363(6428):446–448

    Article  CAS  PubMed  Google Scholar 

  47. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173. https://doi.org/10.1038/374168a0

    Article  PubMed  CAS  Google Scholar 

  48. Harmsen MM, De Haard HJ (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77(1):13–22. https://doi.org/10.1007/s00253-007-1142-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang Z, Mathias A, Stavrou S, Neville DM Jr (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng Des Sel 18(7):337–343. https://doi.org/10.1093/protein/gzi036

    Article  PubMed  CAS  Google Scholar 

  50. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruine AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274(26):18218–18230

    Article  PubMed  Google Scholar 

  51. Lipovsek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24(1–2):3–9. https://doi.org/10.1093/protein/gzq097

    Article  PubMed  CAS  Google Scholar 

  52. Tasumi S, Velikovsky CA, Xu G, Gai SA, Wittrup KD, Flajnik MF, Mariuzza RA, Pancer Z (2009) High-affinity lamprey VLRA and VLRB monoclonal antibodies. Proc Natl Acad Sci U S A 106(31):12891–12896. https://doi.org/10.1073/pnas.0904443106

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boder ET, Bill JR, Nields AW, Marrack PC, Kappler JW (2005) Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide. Biotechnol Bioeng 92(4):485–491. https://doi.org/10.1002/bit.20616

    Article  PubMed  CAS  Google Scholar 

  54. Jones LL, Brophy SE, Bankovich AJ, Colf LA, Hanick NA, Garcia KC, Kranz DM (2006) Engineering and characterization of a stabilized alpha1/alpha2 module of the class I major histocompatibility complex product Ld. J Biol Chem 281(35):25734–25744. https://doi.org/10.1074/jbc.M604343200

    Article  PubMed  CAS  Google Scholar 

  55. Kieke MC, Shusta EV, Boder ET, Teyton L, Wittrup KD, Kranz DM (1999) Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci U S A 96(10):5651–5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Richman SA, Aggen DH, Dossett ML, Donermeyer DL, Allen PM, Greenberg PD, Kranz DM (2009) Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain ValphaVbeta fragments. Mol Immunol 46(5):902–916. https://doi.org/10.1016/j.molimm.2008.09.021

    Article  PubMed  CAS  Google Scholar 

  57. Parthasarathy R, Subramanian S, Boder ET, Discher DE (2006) Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display. Biotechnol Bioeng 93(1):159–168. https://doi.org/10.1002/bit.20684

    Article  PubMed  CAS  Google Scholar 

  58. Wang KC, Patel CA, Wang J, Wang X, Luo PP, Zhong P (2010) Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. J Immunol Methods 354(1–2):11–19. https://doi.org/10.1016/j.jim.2010.01.006

    Article  PubMed  CAS  Google Scholar 

  59. Scholler N, Garvik B, Quarles T, Jiang S, Urban N (2006) Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 317(1–2):132–143. https://doi.org/10.1016/j.jim.2006.10.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovsek D (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24(6):525–530. https://doi.org/10.1093/protein/gzr008

    Article  PubMed  CAS  Google Scholar 

  61. Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d'Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325. https://doi.org/10.1016/j.jbiotec.2008.12.015

    Article  PubMed  CAS  Google Scholar 

  62. Berdichevsky M, d'Anjou M, Mallem MR, Shaikh SS, Potgieter TI (2011) Improved production of monoclonal antibodies through oxygen-limited cultivation of glycoengineered yeast. J Biotechnol 155:217–224. https://doi.org/10.1016/j.jbiotec.2011.06.021

    Article  PubMed  CAS  Google Scholar 

  63. Jacobs PP, Ryckaert S, Geysens S, De Vusser K, Callewaert N, Contreras R (2008) Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnol Lett 30(12):2173–2181. https://doi.org/10.1007/s10529-008-9807-1

    Article  PubMed  CAS  Google Scholar 

  64. Su GD, Zhang X, Lin Y (2010) Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol Lett 32(8):1131–1136. https://doi.org/10.1007/s10529-010-0270-4

    Article  PubMed  CAS  Google Scholar 

  65. Ryckaert S, Pardon E, Steyaert J, Callewaert N (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 145(2):93–98. https://doi.org/10.1016/j.jbiotec.2009.10.010

    Article  PubMed  CAS  Google Scholar 

  66. Jo JH, Im EM, Kim SH, Lee HH (2011) Surface display of human lactoferrin using a glycosylphosphatidylinositol-anchored protein of Saccharomyces cerevisiae in Pichia pastoris. Biotechnol Lett 33(6):1113–1120. https://doi.org/10.1007/s10529-011-0536-5

    Article  PubMed  CAS  Google Scholar 

  67. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  Google Scholar 

  68. Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23(9):1105–1116. https://doi.org/10.1038/nbt1126

    Article  PubMed  CAS  Google Scholar 

  69. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1(2):755–768. https://doi.org/10.1038/nprot.2006.94

    Article  PubMed  CAS  Google Scholar 

  70. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304(1–2):30–42. https://doi.org/10.1016/j.jim.2005.05.006

    Article  PubMed  CAS  Google Scholar 

  71. Dangaj D, Scholler N (2015) Isolation and validation of anti-B7-H4 scFvs from an ovarian cancer scFv yeast-display library. Methods Mol Biol 1319:37–49. https://doi.org/10.1007/978-1-4939-2748-7_2

    Article  PubMed  Google Scholar 

  72. Pavoor TV, Wheasler JA, Kamat V, Shusta EV (2012) An enhanced approach for engineering thermally stable proteins using yeast display. Protein Eng Des Sel 25(10):625–630. https://doi.org/10.1093/protein/gzs041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Traxlmayr MW, Shusta EV (2017) Directed evolution of protein thermal stability using yeast surface display. Methods Mol Biol 1575:45–65. https://doi.org/10.1007/978-1-4939-6857-2_4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Scholler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scholler, N. (2018). Selection of Antibody Fragments by Yeast Display. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics