Skip to main content

Selection of Antibody Fragments Against Structured DNA by Phage Display

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

In addition to the canonical B-form structure, DNA can adopt alternative conformations including Z DNA, triplex DNA, as well as G4 and i-Motif quadruplex structures. Such structures have been shown to form in cells in a dynamic manner. Monoclonal antibodies against such structures represent key tools to study the biological functions of these structures. Here we provide protocols for the generation of antibody fragments against structured DNA using phage display selections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  2. Sun D, Hurley LH (2009) The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 52(9):2863–2874. https://doi.org/10.1021/jm900055s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang AH (1989) The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). J Biol Chem 264(14):7921–7935

    PubMed  CAS  Google Scholar 

  4. Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95. https://doi.org/10.1146/annurev.bi.64.070195.000433

    Article  PubMed  CAS  Google Scholar 

  5. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417(6891):876–880. https://doi.org/10.1038/nature755

    Article  PubMed  CAS  Google Scholar 

  6. Phan AT, Gueron M, Leroy JL (2000) The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J Mol Biol 299(1):123–144. https://doi.org/10.1006/jmbi.2000.3613

    Article  PubMed  CAS  Google Scholar 

  7. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770–780. https://doi.org/10.1038/nrg3296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33(9):2908–2916. https://doi.org/10.1093/nar/gki609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bedrat A, Lacroix L, Mergny JL (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 44(4):1746–1759. https://doi.org/10.1093/nar/gkw006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32(6):271–278. https://doi.org/10.1016/j.tibs.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  11. Zeraati M, Moye AL, Wong JW, Perera D, Cowley MJ, Christ DU, Bryan TM, Dinger ME (2017) Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression. Sci Rep 7(1):708. https://doi.org/10.1038/s41598-017-00739-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Balasubramanian S, Hurley LH, Neidle S (2011) Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov 10(4):261–275. https://doi.org/10.1038/nrd3428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Collie GW, Parkinson GN (2011) The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem Soc Rev 40(12):5867–5892. https://doi.org/10.1039/c1cs15067g

    Article  PubMed  CAS  Google Scholar 

  14. Li Q, Xiang JF, Yang QF, Sun HX, Guan AJ, Tang YL (2013) G4LDB: a database for discovering and studying G-quadruplex ligands. Nucleic Acids Res 41(Database issue):D1115–D1123. https://doi.org/10.1093/nar/gks1101

    Article  PubMed  CAS  Google Scholar 

  15. Day HA, Pavlou P, Waller ZA (2014) i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22(16):4407–4418. https://doi.org/10.1016/j.bmc.2014.05.047

    Article  PubMed  CAS  Google Scholar 

  16. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci U S A 98(15):8572–8577. https://doi.org/10.1073/pnas.141229498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem 5(3):182–186. https://doi.org/10.1038/nchem.1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, Bryan TM, Dinger ME, Christ D (2018) I-motif DNA structures are formed in the nuclei of human cells. Nature Chemistry 10(6):631–637

    Google Scholar 

  19. Kristensen P, Winter G (1998) Proteolytic selection for protein folding using filamentous bacteriophages. Fold Des 3(5):321–328

    Article  CAS  PubMed  Google Scholar 

  20. Rouet R, Dudgeon K, Christie M, Langley D, Christ D (2015) Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem 290(19):11905–11917. https://doi.org/10.1074/jbc.M114.614842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rouet R, Lowe D, Dudgeon K, Roome B, Schofield P, Langley D, Andrews J, Whitfeld P, Jermutus L, Christ D (2012) Expression of high-affinity human antibody fragments in bacteria. Nat Protoc 7(2):364–373. https://doi.org/10.1038/nprot.2011.448

    Article  PubMed  CAS  Google Scholar 

  22. Lee CM, Iorno N, Sierro F, Christ D (2007) Selection of human antibody fragments by phage display. Nat Protoc 2(11):3001–3008

    Article  CAS  PubMed  Google Scholar 

  23. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9):989–994. https://doi.org/10.1038/79494

    Article  PubMed  CAS  Google Scholar 

  24. Kypr J, Kejnovska I, Renciuk D, Vorlickova M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37(6):1713–1725. https://doi.org/10.1093/nar/gkp026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1(4):263–282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Christ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zeraati, M., Dinger, M.E., Christ, D. (2018). Selection of Antibody Fragments Against Structured DNA by Phage Display. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics