Skip to main content

Selection of Antibodies to Transiently Expressed Membrane Proteins Using Phage Display

  • Protocol
  • First Online:
Book cover Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

Cell membrane proteins serve as attractive targets for biopharmaceutical development in addition to gauging their fundamental process in a biological system. Approximately 38% of the entire genome codes for plasma membrane proteins; however the discovery and development of antibody binders to such targets are a technical challenge. Methods to raise binders against such targets by cloning and expressing soluble extracellular regions have been met with limited success due to the loss of critical epitopes, with the resulting antibodies failing to bind to their target in its native conformation. This chapter outlines a “cell based biopanning” method in order to isolate antibodies against membrane proteins in their native conformation using transiently expressed, GFP-tagged target proteins. This method overcomes the limitations of non-specific binding of phage to the cells, abundance of irrelevant antigens on the cell surface, while retaining the native structure of the antigen on the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB (2009) Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today 14(23–24):1130–1135. https://doi.org/10.1016/j.drudis.2009.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Chang CY, Lee YH, Jiang-Shieh YF, Chien HF, Pai MH, Chen HM, Fong TH, Wu CH (2011) Novel distribution of cluster of differentiation 200 adhesion molecule in glial cells of the peripheral nervous system of rats and its modulation after nerve injury. Neuroscience 183:32–46. https://doi.org/10.1016/j.neuroscience.2011.03.049

    Article  PubMed  CAS  Google Scholar 

  3. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10(1):47–60

    Article  CAS  PubMed  Google Scholar 

  4. Jones ML, Alfaleh MA, Kumble S, Zhang S, Osborne GW, Yeh M, Arora N, Hou JJC, Howard CB, Chin DY, Mahler SM (2016) Targeting membrane proteins for antibody discovery using phage display. Sci Rep 6:26240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cai X, Garen A (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc Natl Acad Sci 92(14):6537–6541

    Article  CAS  PubMed  Google Scholar 

  6. Heitner T, Moor A, Garrison JL, Marks C, Hasan T, Marks JD (2001) Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J Immunol Methods 248(1–2):17–30. https://doi.org/10.1016/S0022-1759(00)00340-9

    Article  PubMed  CAS  Google Scholar 

  7. Kolonin MG, Bover L, Sun J, Zurita AJ, Do K-A, Lahdenranta J, Cardo-Vila M, Giordano RJ, Jaalouk DE, Ozawa MG, Moya CA, Souza GR, Staquicini FI, Kunyiasu A, Scudiero DA, Holbeck SL, Sausville EA, Arap W, Pasqualini R (2006) Ligand-directed surface profiling of human cancer cells with combinatorial peptide libraries. Cancer Res 66(1):34–40. https://doi.org/10.1158/0008-5472.can-05-2748

    Article  PubMed  CAS  Google Scholar 

  8. Lekkerkerker A, Logtenberg T (1999) Phage antibodies against human dendritic cell subpopulations obtained by flow cytometry-based selection on freshly isolated cells. J Immunol Methods 231(1–2):53–63

    Article  CAS  PubMed  Google Scholar 

  9. Popkov M, Rader C, Barbas CF 3rd (2004) Isolation of human prostate cancer cell reactive antibodies using phage display technology. J Immunol Methods 291:137–151

    Article  CAS  PubMed  Google Scholar 

  10. Poul M-A, Becerril B, Nielsen UB, Morisson P, Marks JD (2000) Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 301(5):1149–1161

    Article  CAS  PubMed  Google Scholar 

  11. Santos-Esteban E, Curiel-Quesada E (2001) Isolation of human scFv antibody fragments against ABO blood group antigens from a phage display library. Vox Sang 81:194–198

    Article  CAS  PubMed  Google Scholar 

  12. Siva AC, Kirkland RE, Lin B, Maruyama T, McWhirter J, Yantiri-Wernimont F, Bowdish KS, Xin H (2008) Selection of anti-cancer antibodies from combinatorial libraries by whole-cell panning and stringent subtraction with human blood cells. J Immunol Methods 330:109–119

    Article  CAS  PubMed  Google Scholar 

  13. Watters JM, Tellernan P, Junghans RP (1997) An optimized method for cell-based phage display panning. Immunotechnology 3:21–29

    Article  CAS  PubMed  Google Scholar 

  14. Tur MK, Huhn M, Sasse S, Engert A, Barth S (2001) Selection of scFv phages on intact cells under low pH conditions leads to a significant loss of insert-free phages. BioTechniques 30(2):404–413

    Article  CAS  PubMed  Google Scholar 

  15. Codamo J, Hou JJC, Hughes BS, Gray PP, Munro TP (2011) Efficient mAb production in CHO cells incorporating PEI-mediated transfection, mild hypothermia and the co-expression of XBP-1. J Chem Technol Biotechnol 86(7):923–934. https://doi.org/10.1002/jctb.2572

    Article  CAS  Google Scholar 

  16. Nilsson N, Malmborg A-C, Borrebaeck CAK (2000) The phage infection process: a functional role for the distal linker region of bacteriophage protein 3. J Virol 74(9):4229–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project utilized the infrastructure provided by the National Biologics Facility, an initiative of the Australian Government being conducted as part of the National Collaborative Research Infrastructure Strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina L. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jones, M.L., Mahler, S.M., Kumble, S. (2018). Selection of Antibodies to Transiently Expressed Membrane Proteins Using Phage Display. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics