Skip to main content

Antibody Design and Humanization via In Silico Modeling

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

Antibody humanization process converts any nonhuman antibody sequence into humanized antibodies. This can be achieved using different methods of antibody design and engineering. This chapter will primarily focus on antibody design using a homology model followed by framework shuffling of murine to human germline sequence for humanization. Historically, mouse antibodies have been humanized using sequence-based approaches, in which all the murine frameworks are replaced with most homologous human germline sequence or related scaffold. Most often this humanized antibody design, when tested, has a significantly reduced binding or no binding to the cognate antigen. This is due to noncompatibility of mouse CDRs being supported by non-native human framework scaffold. This mismatch between mouse, human structural fold, and elimination of key conformational residues often leads to antibody humanization failures. Recently, there has been advent of homology modelor structure-guided antibody humanization. Instead of humanization based on linear sequence, this approach takes into account the tertiary structure and fold of the mouse antibody. A mouse homology model of the fragment variable is created, and based on sequence alignment with human germline, residues that are different in mouse are replaced with humanized sequence in the model. Energy minimization is applied to this humanized model that also delineates residues which might have steric clashes due to change in the overall tertiary conformation of the humanized antibody. Therefore, a homology model-guided with rational mutations, and reintroduction of key conformational residues from mouse antibody not only eliminates steric clashes but might also restore function in relation to binding affinity to its antigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332(6162):323–327. https://doi.org/10.1038/332323a0

    Article  PubMed  CAS  Google Scholar 

  2. Harding FA, Stickler MM, Razo J, DuBridge RB (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2(3):256–265

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dall’Acqua WF, Damschroder MM, Zhang J, Woods RM, Widjaja L, Yu J, Wu H (2005) Antibody humanization by framework shuffling. Methods 36(1):43–60. https://doi.org/10.1016/j.ymeth.2005.01.005

    Article  PubMed  CAS  Google Scholar 

  4. Tan P, Mitchell DA, Buss TN, Holmes MA, Anasetti C, Foote J (2002) “Superhumanized” antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 169(2):1119–1125

    Article  CAS  PubMed  Google Scholar 

  5. Roguska MA, Pedersen JT, Keddy CA, Henry AH, Searle SJ, Lambert JM, Goldmacher VS, Blattler WA, Rees AR, Guild BC (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc Natl Acad Sci U S A 91(3):969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mader A, Kunert R (2010) Humanization strategies for an anti-idiotypic antibody mimicking HIV-1 gp41. Protein Eng Des Sel 23(12):947–954. https://doi.org/10.1093/protein/gzq092

    Article  PubMed  CAS  Google Scholar 

  7. Chang DK, Kurella VB, Biswas S, Avnir Y, Sui J, Wang X, Sun J, Wang Y, Panditrao M, Peterson E, Tallarico A, Fernandes S, Goodall M, Zhu Q, Brown JR, Jefferis R, Marasco WA (2016) Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL. MAbs 8(4):787–798. https://doi.org/10.1080/19420862.2016.1159365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Choi Y, Hua C, Sentman CL, Ackerman ME, Bailey-Kellogg C (2015) Antibody humanization by structure-based computational protein design. MAbs 7(6):1045–1057. https://doi.org/10.1080/19420862.2015.1076600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Apgar JR, Mader M, Agostinelli R, Benard S, Bialek P, Johnson M, Gao Y, Krebs M, Owens J, Parris K, St Andre M, Svenson K, Morris C, Tchistiakova L (2016) Beyond CDR-grafting: structure-guided humanization of framework and CDR regions of an anti-myostatin antibody. MAbs 8(7):1302–1318. https://doi.org/10.1080/19420862.2016.1215786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Whitelegg NR, Rees AR (2000) WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng 13(12):819–824

    Article  CAS  PubMed  Google Scholar 

  11. Weitzner BD, Jeliazkov JR, Lyskov S, Marze N, Kuroda D, Frick R, Adolf-Bryfogle J, Biswas N, Dunbrack RL Jr, Gray JJ (2017) Modeling and docking of antibody structures with Rosetta. Nat Protoc 12(2):401–416. https://doi.org/10.1038/nprot.2016.180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marcatili P, Olimpieri PP, Chailyan A, Tramontano A (2014) Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected]. Nat Protoc 9(12):2771–2783. https://doi.org/10.1038/nprot.2014.189

    Article  PubMed  CAS  Google Scholar 

  13. Ehrenmann F, Kaas Q, Lefranc MP (2010) IMGT/3Dstructure-DB and IMGT/DomainGapAlign: a database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res 38(Database issue):D301–D307

    Article  CAS  PubMed  Google Scholar 

  14. Kurella VB, Gali R (2014) Structure guided homology model based design and engineering of mouse antibodies for humanization. Bioinformation 10(4):180–186. https://doi.org/10.6026/97320630010180

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reddy Gali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kurella, V.B., Gali, R. (2018). Antibody Design and Humanization via In Silico Modeling. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics