Skip to main content

Cellular Models for the Serpinopathies

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

Our current knowledge about the cellular mechanisms underlying serpin-related disorders, the serpinopathies, is predominantly based on studies in cell culture models of disease, particularly for alpha-1 antitrypsin (AAT, SERPINA1) deficiency causing emphysema and the familial encephalopathy with neuroserpin (NS, SERPINI1) inclusion bodies (FENIB). FENIB, a neurodegenerative dementia, is caused by polymerization of NS (Miranda and Lomas, Cell Mol Life Sci 63:709–722, 2006; Roussel BD et al., Epileptic Disor 18:103–110, 2016), while AAT deficiency presents as a result of several divergent mutations in the AAT gene that cause lack of protein synthesis or complete intracellular degradation (null variants) or polymer formation (polymerogenic variants) (Lomas et al., J Hepatol 65:413–424, 2016; Greene et al., Nat Rev Dis Primers 2:16051, 2016; Ferrarotti et al. Orphanet J Rare D 9:172, 2014). Both diseases have been extensively modeled in cell culture systems by expressing mutant variants in a variety of ways. Here we describe the methodologies we follow in our cell model systems used to examine serpin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miranda E, Lomas DA (2006) Neuroserpin, a serpin to think about. Cell Mol Life Sci 63:709–722

    Article  CAS  PubMed  Google Scholar 

  2. Roussel BD, Lomas DA, Crowther DA (2016) Progressive myoclonus epilepsy associated with neuroserpin inclusion bodies (neuroserpinosis). Epileptic Disord 18(S2):103–110

    PubMed  Google Scholar 

  3. Lomas DA, Hurst JR, Gooptu B (2016) Update on alpha1-antitrypsin deficiency: new therapies. J Hepatol 65(2):413–424

    Article  CAS  PubMed  Google Scholar 

  4. Greene CM, Marciniak SJ, Teckman J et al (2016) α1-antitrypsin deficiency. Nat Rev Dis Primers 2:16051

    Article  PubMed  Google Scholar 

  5. Ferrarotti I, Carroll TP, Ottaviani S et al (2014) Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet J Rare Dis 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belorgey D, Irving JA, Ekeowa UI et al (2011) Characterisation of serpin polymers in vitro and in vivo, Methods 53:255–266

    Article  CAS  PubMed  Google Scholar 

  7. Ronzoni R, Berardelli R, Medicina D et al (2016) Aberrant disulfide bonding contributes to ER retention of alpha-1 antitrypsin deficiency variants. Hum Mol Genet 25:642–650

    Article  CAS  PubMed  Google Scholar 

  8. Medicina D, Montani N, Fra AM et al (2009) Molecular characterisation of the new defective PBrescia alpha-1 antitrypsin allele. Hum Mutat 30:E771–E781

    Article  PubMed  Google Scholar 

  9. Miranda E, Ferrarotti I, Berardelli M et al (2017) The pathological Trento variant of alpha-1 antitrypsin (E75V) shows nonclassical behaviour during polymerisation. FEBS J 284:2110–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miranda E, Romisch K, Lomas DA (2004) Mutant of neuroserpin that cause dementia accumulate as polymers within the endoplasmic reticulum. J Biol Chem 279:28283–28291

    Article  CAS  PubMed  Google Scholar 

  11. Moriconi C, Ordoñez A, Lupo G et al (2015) Interactions between N-linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum. FEBS J 282:4565–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fra AM, Cosmi F, Ordoñez A et al (2016) Pathological polymers of Z alpha1-AT can be secreted from cells through the canonical secretory pathway. Eur Respir J 47:1005–1009

    Article  CAS  PubMed  Google Scholar 

  13. Miranda E, MacLeod I, Davies MJ et al (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17:1527–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guadagno NA, Moriconi C, Licursi V et al (2017) Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB. Neurobiol Dis 103:32–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sinno M, Biagioni S, Ajmone-Cat MA et al (2013) The matrix metalloproteinase inhibitor marimastat promotes neural progenitor cell differentiation into neurons by gelatinase-independent TIMP-2-dependent mechanisms. Stem Cells Dev 22:345–358

    Article  CAS  PubMed  Google Scholar 

  16. Teckman JH, Burrows J, Hidvegi T et al (2001) The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem 276:44865–44872

    Article  CAS  PubMed  Google Scholar 

  17. Hidvegi T, Schmidt BZ, Hale P et al (2005) Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspase-4 and -12, NFkappaB, and BAP-31 but not the unfolded protein response. J Biol Chem 280:39002–39015

    Article  CAS  PubMed  Google Scholar 

  18. Kroeger H, Miranda E, MacLeod I et al (2009) Endoplasmic reticulum associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J Biol Chem 284:22793–22802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ordoñez A, Snapp EL, Tan L et al (2013) Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology 57:2049–2060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Romina Berardelli for technical assistance. This work was supported in part by Fondazione Cariplo (#2013-0967) to A.F. and by Sapienza Research grant 2016 (Sapienza University of Rome, Italy) to E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fra, A., D’Acunto, E., Laffranchi, M., Miranda, E. (2018). Cellular Models for the Serpinopathies. In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics