Skip to main content

Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whisstock JC, Bird PI (eds) (2011) Serpin structure and evolution, Methods in enzymology, 1st edn. Elsevier, Acad. Press, Amsterdam

    Google Scholar 

  2. Belorgey D, Hägglöf P, Karlsson-Li S et al (2007) Protein misfolding and the serpinopathies. Prion 1:15–20

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ambadapadi S, Munuswamy-Ramanujam G, Zheng D et al (2016) Reactive center loop (RCL) peptides derived from serpins display independent coagulation and immune modulating activities. J Biol Chem 291:2874–2887

    Article  PubMed  CAS  Google Scholar 

  4. Lomas DA, Carrell RW (2002) Serpinopathies and the conformational dementias. Nat Rev Genet 3:759–768

    Article  PubMed  CAS  Google Scholar 

  5. Engh R, Löbermann H, Schneider M et al (1989) The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng 2:407–415

    Article  PubMed  CAS  Google Scholar 

  6. Tucker HM, Mottonen J, Goldsmith EJ et al (1995) Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition. Nat Struct Biol 2:442–445

    Article  PubMed  CAS  Google Scholar 

  7. Skinner R, Abrahams JP, Whisstock JC et al (1997) The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol 266:601–609

    Article  PubMed  CAS  Google Scholar 

  8. Gooptu B, Hazes B, Chang WS et al (2000) Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci U S A 97:67–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Stein PE, Leslie AG, Finch JT et al (1991) Crystal structure of uncleaved ovalbumin at 1.95 A resolution. J Mol Biol 221:941–959

    Article  PubMed  CAS  Google Scholar 

  10. Mahon B, Ambadapadi S, Yaron J et al (2018) Crystal structure of cleaved Serp-1, a Myxomavirus-derived immune modulating serpin; structural design of serpin reactive center loop (RCL) peptides with improved therapeutic function. Biochemistry 57:1096–1107

    Article  PubMed  CAS  Google Scholar 

  11. Jin L, Abrahams JP, Skinner R et al (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94:14683–14688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ye S, Cech AL, Belmares R et al (2001) The structure of a Michaelis serpin-protease complex. Nat Struct Biol 8:979–983

    Article  PubMed  CAS  Google Scholar 

  13. Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  PubMed  CAS  Google Scholar 

  14. Rose PW, Prlić A, Altunkaya A et al (2017) The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 45:D271–D281

    Article  PubMed  CAS  Google Scholar 

  15. Rhodes G (2006) Crystallography made crystal clear: a guide for users of macromolecular models, Complementary science series, 3rd edn. Elsevier; Academic Press, Amsterdam; Boston

    Google Scholar 

  16. Wright HT, Qian HX, Huber R (1990) Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved alpha-1-proteinase inhibitor. J Mol Biol 213:513–528

    Article  PubMed  CAS  Google Scholar 

  17. Baumann U, Huber R, Bode W et al (1991) Crystal structure of cleaved human alpha 1-antichymotrypsin at 2.7 A resolution and its comparison with other serpins. J Mol Biol 218:595–606

    Article  PubMed  CAS  Google Scholar 

  18. Johnson DJD, Langdown J, Huntington JA (2010) Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci U S A 107:645–650

    Article  PubMed  Google Scholar 

  19. Xue Y, Björquist P, Inghardt T et al (1998) Interfering with the inhibitory mechanism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 6:627–636

    Article  PubMed  CAS  Google Scholar 

  20. Huang X, Dementiev A, Olson ST et al (2010) Basis for the specificity and activation of the serpin protein Z-dependent proteinase inhibitor (ZPI) as an inhibitor of membrane-associated factor Xa. J Biol Chem 285:20399–20409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Beinrohr L, Harmat V, Dobó J et al (2007) C1 inhibitor serpin domain structure reveals the likely mechanism of heparin potentiation and conformational disease. J Biol Chem 282:21100–21109

    Article  PubMed  CAS  Google Scholar 

  22. Walls D, Loughran ST (2011) Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 681:151–175

    Article  PubMed  CAS  Google Scholar 

  23. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification: affinity tags for protein purification. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) Current protocols in protein science. Wiley, Hoboken, NJ, pp 9.9.1–9.9.23. https://doi.org/10.1002/0471140864.ps0909s73

    Chapter  Google Scholar 

  24. Al-Ayyoubi M, Gettins PGW, Volz K (2004) Crystal structure of human maspin, a serpin with antitumor properties: reactive center loop of Maspin is exposed but constrained. J Biol Chem 279:55540–55544

    Article  PubMed  CAS  Google Scholar 

  25. Wingfield PT (2015) Overview of the purification of recombinant proteins: purification of recombinant proteins. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT (eds) Current protocols in protein science. Wiley, Hoboken, NJ, pp 6.1.1–6.1.35. https://doi.org/10.1002/0471140864.ps0601s80

    Chapter  Google Scholar 

  26. McCoy AJ, Pei XY, Skinner R et al (2003) Structure of beta-antithrombin and the effect of glycosylation on antithrombin’s heparin affinity and activity. J Mol Biol 326:823–833

    Article  PubMed  CAS  Google Scholar 

  27. Hopkins FG, Pinkus SN (1898) Observations on the crystallization of animal Proteids. J Physiol 23:130–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Weber PC (1997) [2] Overview of protein crystallization methods, Methods in Enzymology, vol 276. Elsevier, Amsterdam, pp 13–22

    Google Scholar 

  29. Bunker RD, Dickson JMJ, Caradoc-Davies TT et al (2012) Use of a repetitive seeding protocol to obtain diffraction-quality crystals of a putative human D-xylulokinase. Acta Crystallograph Sect F Struct Biol Cryst Commun 68:1259–1262

    Article  CAS  Google Scholar 

  30. Bergfors T (2009) Protein crystallization, 2nd edn. International University Line, San Diego

    Google Scholar 

  31. Manuel Garcıa-Ruiz J (2003) Nucleation of protein crystals. J Struct Biol 142:22–31

    Article  PubMed  CAS  Google Scholar 

  32. Elton LRB, Jackson DF (1966) X-ray diffraction and the Bragg law. Am J Phys 34:1036–1038

    Article  CAS  Google Scholar 

  33. Leslie AGW, Powell HR, Winter G et al (2002) Automation of the collection and processing of X-ray diffraction data – a generic approach. Acta Crystallogr D Biol Crystallogr 58:1924–1928

    Article  PubMed  CAS  Google Scholar 

  34. Skarzynski T (2013) Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices. Acta Crystallogr D Biol Crystallogr 69:1283–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sliz P, Harrison SC, Rosenbaum G (2003) How does radiation damage in protein crystals depend on X-ray dose? Structure 11:13–19

    Article  PubMed  CAS  Google Scholar 

  36. International Union of Crystallography (2006) International tables for crystallography. Wiley, Hoboken, NJ

    Google Scholar 

  37. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  PubMed  CAS  Google Scholar 

  38. Battye TGG, Kontogiannis L, Johnson O et al (2011) iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr 67:271–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Taylor G (2003) The phase problem. Acta Crystallogr D Biol Crystallogr 59:1881–1890

    Article  PubMed  Google Scholar 

  40. Perutz MF, Rossmann MG, Cullis AF et al (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  PubMed  CAS  Google Scholar 

  41. Kendrew JC, Dickerson RE, Strandberg BE et al (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 A. resolution. Nature 185:422–427

    Article  PubMed  CAS  Google Scholar 

  42. Cowtan K (2003) Phase problem in X-ray crystallography, and its solution. In: Encyclopedia of life sciences. Wiley, Chichester. https://doi.org/10.1038/npg.els.0002722

    Chapter  Google Scholar 

  43. Rossmann MG (1990) The molecular replacement method. Acta Crystallogr A 46(Pt 2):73–82

    Article  PubMed  Google Scholar 

  44. Kim S-J, Woo J-R, Seo EJ et al (2001) A 2.1 Å resolution structure of an uncleaved α1-antitrypsin shows variability of the reactive center and other loops. J Mol Biol 306:109–119

    Article  PubMed  CAS  Google Scholar 

  45. Messerschmidt A (2007) X-ray crystallography of biomacromolecules. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527610129

    Book  Google Scholar 

  46. Trapani S, Navaza J (2008) AMoRe: classical and modern. Acta Crystallogr D Biol Crystallogr 64:11–16

    Article  PubMed  CAS  Google Scholar 

  47. Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 66:22–25

    Article  PubMed  CAS  Google Scholar 

  48. McCoy AJ (2007) Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr 63:32–41

    Article  PubMed  CAS  Google Scholar 

  49. Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr 55:484–491

    Article  PubMed  CAS  Google Scholar 

  50. Glykos NM, Kokkinidis M (2000) A stochastic approach to molecular replacement. Acta Crystallogr D Biol Crystallogr 56:169–174

    Article  PubMed  CAS  Google Scholar 

  51. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  52. Gasteiger E, Gattiker A, Hoogland C et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dodson E (2008) The befores and afters of molecular replacement. Acta Crystallogr D Biol Crystallogr 64:17–24

    Article  PubMed  CAS  Google Scholar 

  54. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  CAS  Google Scholar 

  55. Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Podjarny AD, Rees B, Urzhumtsev AG (1996) Density modification in X-ray crystallography, Crystallographic methods and protocols, vol 56. Humana Press, New Jersey, pp 205–226

    Google Scholar 

  57. Read RJ, Zhou A, Stein PE (2011) Solving serpin crystal structures, Methods in enzymology, vol 501. Elsevier, Amsterdam, pp 49–61

    Google Scholar 

  58. DiMaio F, Terwilliger TC, Read RJ et al (2011) Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  60. Levantino M, Yorke BA, Monteiro DC et al (2015) Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr Opin Struct Biol 35:41–48

    Article  PubMed  CAS  Google Scholar 

  61. Spence JCH (2017) XFELs for structure and dynamics in biology. IUCrJ 4:322–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Crowther RA (2016) The resolution revolution: recent advances in cryoEM. Elsevier, Amsterdam

    Google Scholar 

  63. Frank J (2017) Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12:209–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gupta S, Feng J, Chance M et al (2016) Recent advances and applications in synchrotron X-ray protein footprinting for protein structure and dynamics elucidation. Protein Pept Lett 23:309–322

    Article  PubMed  CAS  Google Scholar 

  65. Blakeley MP (2009) Neutron macromolecular crystallography. Crystallogr Rev 15:157–218

    Article  CAS  Google Scholar 

  66. Myles DAA (2006) Neutron protein crystallography: current status and a brighter future. Curr Opin Struct Biol 16:630–637

    Article  PubMed  CAS  Google Scholar 

  67. Tuukkanen AT, Spilotros A, Svergun DI (2017) Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ 4:518–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Spilotros A, Svergun DI (2014) Advances in small- and wide-angle X-ray scattering SAXS and WAXS of proteins. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 1–34

    Google Scholar 

  69. Khan MS, Singh P, Azhar A et al (2011) Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids 2011:1–10

    Article  CAS  Google Scholar 

  70. Schreuder HA, de Boer B, Dijkema R et al (1994) The intact and cleaved human antithrombin III complex as a model for serpin–proteinase interactions. Nat Struct Biol 1:48–54

    Article  PubMed  CAS  Google Scholar 

  71. Perry SL, Guha S, Pawate AS et al (2014) In situ serial Laue diffraction on a microfluidic crystallization device. J Appl Crystallogr 47:1975–1982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Graber T, Anderson S, Brewer H et al (2011) BioCARS: a synchrotron resource for time-resolved X-ray science. J Synchrotron Radiat 18:658–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Martin-Garcia JM, Conrad CE, Nelson G et al (2017) Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ 4:439–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kinjo R, Bizen T, Tanaka T (2015) Undulator development for SPring-8-II. Synchrotron radiat. News 28:45–49

    Google Scholar 

  75. Hatsui T, Graafsma H (2015) X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ 2:371–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Schroer CG, Falkenberg G (2014) Hard X-ray nanofocusing at low-emittance synchrotron radiation sources. J Synchrotron Radiat 21:996–1005

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matsuyama S, Nakamori H, Goto T et al (2016) Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors. Sci Rep 6. https://doi.org/10.1038/srep24801

  78. Mahon BP, Kurian JJ, Lomelino CL et al (2016) Microbatch mixing: “shaken not stirred”, a method for macromolecular microcrystal production for serial crystallography. Cryst Growth Des 16:6214. https://doi.org/10.1021/acs.cgd.6b00643

    Article  CAS  Google Scholar 

  79. Heymann M, Opthalage A, Wierman JL et al (2014) Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Pawate AS, Šrajer V, Schieferstein J et al (2015) Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr Sect F Struct Biol Commun 71:823–830

    Article  CAS  Google Scholar 

  81. Cazzolli G, Wang F, a Beccara S et al (2014) Serpin latency transition at atomic resolution. Proc Natl Acad Sci 111:15414–15419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Baker EN (2006) Hydrogen bonding in biological macromolecules. In: Rossmann MG, Arnold E (eds) International tables for crystallography, 1st edn. International Union of Crystallography, Chester, England, pp 546–552

    Chapter  Google Scholar 

  83. Wade RC, Goodford PJ (1989) The role of hydrogen-bonds in drug binding. Prog Clin Biol Res 289:433–444

    PubMed  CAS  Google Scholar 

  84. Woinska M, Grabowsky S, Dominiak PM et al (2016) Hydrogen atoms can be located accurately and precisely by x-ray crystallography. Sci Adv 2:e1600192–e1600192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Kovalevsky AY, Liu F, Leshchenko S et al (2006) Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol 363:161–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Blakeley MP, Langan P, Niimura N et al (2008) Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 18:593–600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Blakeley MP, Hasnain SS, Antonyuk SV (2015) Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCrJ 2:464–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Gerlits O, Keen DA, Blakeley MP et al (2017) Room temperature neutron crystallography of drug resistant HIV-1 protease uncovers limitations of X-ray structural analysis at 100 K. J Med Chem 60:2018–2025

    Google Scholar 

  89. Press Release: The Nobel Prize in Chemistry 2017 (2017) Nobelprize.org

  90. Henderson R, Baldwin JM, Ceska TA et al (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Article  PubMed  CAS  Google Scholar 

  91. Thompson RF, Walker M, Siebert CA et al (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Milne JLS, Borgnia MJ, Bartesaghi A et al (2013) Cryo-electron microscopy - a primer for the non-microscopist. FEBS J 280:28–45

    Article  PubMed  CAS  Google Scholar 

  93. Banerjee S, Bartesaghi A, Merk A et al (2016) 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lomas DA, Belorgey D, Mallya M et al (2005) Molecular mousetraps and the serpinopathies. Biochem Soc Trans 33:321–330

    Article  PubMed  CAS  Google Scholar 

  95. Lucas AR, Ambadapadi S, Mahon BP et al (2017) The serpentine solution. J. Clin. Exp. Cardiolog. 8:e150. https://doi.org/10.4172/2155-9880.1000e150

  96. Guineir A, Fournet G (1955) Small-angle scattering of X-rays (structure of matter series). Wiley, New York

    Google Scholar 

  97. Feigin LA, Svergun DI (1987) In: Taylor GW (ed) Structure analysis by small-angle X-ray and neutron scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6624-0

    Chapter  Google Scholar 

  98. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology-expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cho HS, Schotte F, Dashdorj N et al (2016) Picosecond photobiology: watching a signaling protein function in real time via time-resolved small- and wide-angle X-ray scattering. J Am Chem Soc 138:8815–8823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Behrens MA, Sendall TJ, Pedersen JS et al (2014) The shapes of Z-α1-antitrypsin polymers in solution support the C-terminal domain-swap mechanism of polymerization. Biophys J 107:1905–1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Li D, Boland C, Walsh K et al (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp. https://doi.org/10.3791/4000

  102. Moraes I, Archer M (2015) Methods for the successful crystallization of membrane proteins. In: Owens RJ (ed) Structural proteomics, vol 1261. Springer, New York, pp 211–230

    Google Scholar 

  103. Rayment I (2002) Small-scale batch crystallization of proteins revisited. Structure 10:147–151

    Article  PubMed  CAS  Google Scholar 

  104. Dong A, Xu X, Edwards AM et al (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4:1019–1021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Berejnov V, Husseini NS, Alsaied OA et al (2006) Effects of cryoprotectant concentration and cooling rate on vitrification of aqueous solutions. J Appl Crystallogr 39:244–251

    Article  CAS  Google Scholar 

  106. Dunstone MA, Whisstock JC (2011) Crystallography of serpins and serpin complexes, Methods in enzymology, vol 501. Elsevier, Amsterdam, pp 63–87

    Google Scholar 

  107. Law RHP, Irving JA, Buckle AM et al (2005) The high resolution crystal structure of the human tumor suppressor maspin reveals a novel conformational switch in the G-helix. J Biol Chem 280:22356–22364

    Article  PubMed  CAS  Google Scholar 

  108. Zhou A, Carrell RW, Murphy MP et al (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468:108–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Whisstock JC, Pike RN, Jin L et al (2000) Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin. J Mol Biol 301:1287–1305

    Article  PubMed  CAS  Google Scholar 

  110. Mottonen J, Strand A, Symersky J et al (1992) Structural basis of latency in plasminogen activator inhibitor-1. Nature 355:270–273

    Article  PubMed  CAS  Google Scholar 

  111. Sharp AM, Stein PE, Pannu NS et al (1999) The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure 7:111–118

    Article  PubMed  CAS  Google Scholar 

  112. Kmiecik S, Gront D, Kolinski M et al (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936

    Article  PubMed  CAS  Google Scholar 

  113. Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80:1715–1735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ó Conchúir S, Barlow KA, Pache RA et al (2015) A web resource for standardized benchmark datasets, metrics, and Rosetta protocols for macromolecular modeling and design. PLoS One 10:e0130433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rigden DJ, Keegan RM, Winn MD (2008) Molecular replacement using ab initio polyalanine models generated with ROSETTA. Acta Crystallogr D Biol Crystallogr 64:1288–1291

    Article  PubMed  CAS  Google Scholar 

  116. Briand C, Kozlov SV, Sonderegger P et al (2001) Crystal structure of neuroserpin: a neuronal serpin involved in a conformational disease. FEBS Lett 505:18–22

    Article  PubMed  CAS  Google Scholar 

  117. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV et al (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64:61–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Mahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahon, B.P., McKenna, R. (2018). Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics