Skip to main content

Methods for Assessing Serpins as Neuroprotective Therapeutics

  • Protocol
  • First Online:
Serpins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1826))

Abstract

As the systematic work on the pathogenesis of the white matter injury in the spinal cord models progresses, it becomes obvious that a severe and extraordinarily protracted, destructive inflammation follows the initial injury. Appropriate anti-inflammatory therapies of sufficient duration should not only inhibit but also lead to the elimination of this destructive inflammation, thus resulting in neuroprotection of the spinal cord tissue and a greater preservation of the neurologic function. While dexamethasone, a powerful, anti-inflammatory steroid analog administered continuously by subdural infusion for 7 days inhibited severe macrophage infiltration in the cavity of injury, the dose used was remarkably toxic. A 2-week-long infusion of lower doses of dexamethasone resulted in dose-dependent inhibition of macrophage infiltration and was better tolerated by the rats, but it became evident that a much longer duration of subdural administration of a powerful anti-inflammatory drug is required to eliminate myelin-rich, necrotic debris from the cavity and synthetic steroids such as dexamethasone, and methylprednisolone may be too toxic for this application. Therefore, nontoxic but powerful anti-inflammatory compounds are required for neuroprotective treatment of the spinal cord injury (SCI) and also brain trauma and stroke where the massive injury to the white matter occurs. Serpins have been associated with neurological damage. The mammalian serpin neuroserpin (SERPINI1) is reported to act in a protective manner after cerebrospinal infarction. The serine protease, tissue-type plasminogen activator (tPA), and the serpin plasminogen activator inhibitor (PAI-1, SERPINE1) are both upregulated at sites of central nervous system damage. In preliminary studies, subdural infusion of the myxomaviral serpin, Serp-1, resulted in the powerful inhibition of the macrophage infiltration of the cavity of injury, comparable to the inhibition by high dose of dexamethasone that has proven to be unduly toxic. Nontoxic, yet powerful neuroprotective, anti-inflammatory effects of Serp-1 may indicate this serpin protein as a potential attractive compound to treat SCI and similar syndromes involving massive injury to the white matter such as brain trauma and stroke. Novel methods of drug delivery, chronic subdural infusion, and novel analytic methods to measure the effectiveness of the neuroprotective serpin treatments are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwiecien JM, Jarosz B, Machova-Urdzikova L, Rola R, Dabrowski W (2015) Subdural infusion of dexamethasone inhibits leukomyelitis after acute spinal cord injury in a rat model. Folia Neuropathol 53:41–51

    Article  PubMed  Google Scholar 

  2. Kwiecien JM, Jarosz B, Oakden W, Klapec M, Stanisz GJ, Delaney KH, Kotlinska-Hasiec E, Janik R, Rola R, Dabrowski W (2016) An in vivo model of anti-inflammatory activity of subdural dexamethasone following the spinal cord injury. Pol J Neurol Neurosurg 50:7–15. https://doi.org/10.1016/j.pjnns.2015.10.006

    Article  Google Scholar 

  3. Oakden W, Kwiecien JM, O’Reilly MA, Lake E, Akens MK, Aubert I, Whyne C, Hynynen K, Stanisz GJ (2014) A non-invasive model of cervical spinal cord injury induced with focused ultrasound. J Neurosci Methods 235:92–100

    Article  PubMed  Google Scholar 

  4. Oakden W, Kwiecien JM, O’Reilly MA, Dabrowski W, Whyne C, Finkelstein J, Hynynen K, Stanisz GJ (2015) Quantitative MRI of a non-surgical model of cervical spinal cord injury in the rat. MR Biomed 28:925–936. https://doi.org/10.1002/nbm.3326

    Article  Google Scholar 

  5. Zhang C, Morozova AY, Abakumov MA, Gubsky IL, Douglas P, Feng S, Bryukovetskiy AS, Chekhonin VP (2015) Precise delivery into chronic spinal cord injury syringomyelic cysts with magnetic nanoparticles MRI visualization. Med Sci Monit 21:3179–3185

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ke C, Poon WS, Ng HK, Pang JC, Chan Y (2001) Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett 301:21

    Article  CAS  PubMed  Google Scholar 

  7. Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR (2008) Aquaporin 1 - a novel player in spinal cord injury. J Neurochem 105:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nesic O, Guest JD, Zivadinovic D, Narayana PA, Herrera JJ, Grill RJ, Mokkapati VU, Gelman BB, Lee J (2010) Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 168:1019–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwiecien JM (2016) Post-traumatic inflammation of the white matter; new disease for anti-inflammatory drugs. In: Berhardt LV (ed) Advances in medicine and biology. Vol. 94. Nova Science Publishers, Inc., Hauppauge, NY, pp 149–157

    Google Scholar 

  10. Hu Z, Tu J (2015) The roads to mitochondrial dysfunction in a rat model of posttraumatic syringomyelia. Bio Med Res Int. https://doi.org/10.1155/2015/831490

  11. Najafi E, Bilston LE, Song X, Bongers A, Stoodley MA, Cheng S, Hemley SJ (2016) Longitudinal measurements of syrinx size in a rat model of posttraumatic syringomyelia. J Neurosurg Spine 24:941–948

    Article  PubMed  Google Scholar 

  12. Wong JHY, Song X, Hemley SJ, Bilston LE, Cheng S, Stoodley MA (2016) Direct-trauma model of posttraumatic syringomyelia with a computer-controlled motorized spinal cord impactor. J Neurosurg Spine 24:797–805

    Article  PubMed  Google Scholar 

  13. Bracken MB, Shepard MJ, Collins WF et al (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. N Engl J Med 322:1405

    Article  CAS  PubMed  Google Scholar 

  14. Markandaja M, Sten DM, Menaker J (2012) Acute treatment options for spinal cord injury. Curr Treat Options Neurol 14:175

    Article  Google Scholar 

  15. Pettiford JN, Bikhchandani J, Ostlie BJ et al (2012) A review: the role of high dose methylprednisolone in spinal cord trauma in children. Pediatr Surg Int 28:287

    Article  PubMed  Google Scholar 

  16. Chen H, Zheng D, Abbott J et al (2013) Myxoma virus-derived serpin prolongs survival and reduces inflammation and hemorrhage in an unrelated lethal mouse viral infection. Antimicrob Agents Chemother 57:4114–4127

    Google Scholar 

  17. Dai E, Viswanathan K, Sun YM et al (2006) Identification of myxomaviral serpin reactive site loop sequences that regulate innate immune responses. J Biol Chem 281:8041–8050

    Google Scholar 

  18. Kwiecien JM (2013) Cellular mechanisms of white matter regeneration in adult dysmyelinated rat model. Folia Neuropathol 51:189–202

    Article  CAS  PubMed  Google Scholar 

  19. Delaney KH, Kwiecien JM, Wegiel J, Wisniewski HM, Fletch AL (1995) Familial dysmyelination in a long Evans rat mutant. Lab Anim Sci 45:547–553

    PubMed  CAS  Google Scholar 

  20. Kwiecien JM, O’Connor LT, Goetz BD, Delaney KH, Fletch AL, Duncan ID (1998) Morphological and morphometric studies of the dysmyelinating mutant, the long Evans shaker rat. J Neurocytol 27:581–591

    Article  CAS  PubMed  Google Scholar 

  21. Kwiecien JM (2010) Cellular compensatory mechanisms in the CNS of dysmyelinated rats. Comp Med 60:205–217

    PubMed  PubMed Central  CAS  Google Scholar 

  22. O’Connor LT, Goetz BD, Kwiecien JM, Delaney KH, Fletch AL, Duncan ID (1999) Insertion of a retrotransposon into the myelin basic protein gene causes CNS dysmyelination in the long Evans shaker (LES) rat. J Neurosci 19:3404–3413

    Article  PubMed  Google Scholar 

  23. Phokeo V, Kwiecien JM, Ball AK (2002) Characterization of the optic nerve and retinal ganglion cell layer in the dysmyelinated adult long Evans shaker rat: possible axonal sprouting. J Comp Neurol 451:213–224

    Article  PubMed  Google Scholar 

  24. Kwiecien JM, Avram R (2008) Long distance axonal regeneration in the filum terminale of adult rats is regulated by ependymal cells. J Neurotrauma 25:196–204

    Article  PubMed  Google Scholar 

  25. Vanicky I, Urdzikova L, Saganova L, Cizkova D, Galik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18:1399–1407

    Article  CAS  PubMed  Google Scholar 

  26. Vanicky I, Urdzikova L, Saganova K, Marsala M (2002) Intrathecal methylprednisolone does not improve outcome after severe spinal cord injury in the rat. Neurosci Res Commun 31:183–191

    Article  CAS  Google Scholar 

  27. Chiu C, Miller MC, Caralopoulos IN et al (2012) Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 9:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dabrowski W, Kwiecien JM, Rola R, Klapec M, Stanisz GJ, Kotlinska-Hasiec E, Oakden W, Janik R, Coote M, Frey BN, Turski WA (2015) Prolonged subdural infusion of kynurenic acid is associated with dose-dependent myelin damage in the rat spinal cord. PLoS One 10(11):e0142598. https://doi.org/10.1371/journal.pone.0142598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek M. Kwiecien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwiecien, J.M. (2018). Methods for Assessing Serpins as Neuroprotective Therapeutics. In: Lucas, A. (eds) Serpins. Methods in Molecular Biology, vol 1826. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8645-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8645-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8644-6

  • Online ISBN: 978-1-4939-8645-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics