Skip to main content

Physicochemical Property Labels as Molecular Descriptors for Improved Analysis of Compound–Protein and Compound–Compound Networks

  • Protocol
  • First Online:
Computational Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1825))

Abstract

Small molecules can be represented in various file formats, (1) one-line systems such as SMILES (Simplified Molecular Input Line Entry System) and InChI (International Chemical Identifier) and (2) table systems such as the molfiles, SDF (Structure Data File), and KCF (KEGG Chemical Function). KCF and KCF-S (KEGG Chemical Function-and-Substructures) apply physicochemical property labels on the representations of small molecules, and contribute to improved analysis of compoundprotein networks including drugtarget interaction, and compoundcompound networks including metabolic pathways. In this chapter, the main concepts, usage, and some example applications of the KCFCO and KCF-S packages are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark DE, Pickett SD (2000) Computational methods for the prediction of ‘drug-likeness’. Drug Discov Today 5:49–58

    Article  CAS  Google Scholar 

  2. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254

    Article  CAS  Google Scholar 

  3. Kotera M, Goto S (2016) Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis. Biophys Physicobiol 13:195–205

    Article  Google Scholar 

  4. Weininger D (1970) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Proc. Edinburgh Math. SOC, Vol. 17, pp. 1–14

    Google Scholar 

  5. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC international chemical identifier. J Cheminform 7:23. https://doi.org/10.1186/s13321-015-0068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hattori M, Okuno Y, Goto S, Kanehisa M (2003) Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J Am Chem Soc 125:11853–11865

    Article  CAS  Google Scholar 

  7. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44:D1214–D1219. https://doi.org/10.1093/nar/gkv1031

    Article  CAS  PubMed  Google Scholar 

  8. Brecher JS (1998) The chemfinder webserver: indexing chemical data on the internet. CHIMIA Int J Chem 52:658–663

    CAS  Google Scholar 

  9. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124

    Article  CAS  Google Scholar 

  10. http://www.chemexper.com/

  11. http://kanaya.naist.jp/KNApSAcK/

  12. https://pubchem.ncbi.nlm.nih.gov/

  13. https://www.drugbank.ca/

  14. http://jglobal.jst.go.jp/en/advancedsearch/#t=4

  15. http://www.kegg.jp/kegg/

  16. http://openbabel.org/

  17. http://www.rdkit.org/

  18. https://github.com/cdk

  19. http://www.daylight.com/

  20. https://www.eyesopen.com/oechem-tk

  21. http://lifescience.opensource.epam.com/indigo/

  22. http://frowns.sourceforge.net/

  23. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500

    Article  CAS  Google Scholar 

  24. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  25. Klekota J, Roth FP (2008) Chemical substructures that enrich for biological activity. Bioinformatics 24:2518–2525

    Article  CAS  Google Scholar 

  26. Durant J et al (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Article  CAS  Google Scholar 

  27. Chen B et al (2009) PubChem as a source of polypharmacology. J Chem Inf Model 49:2044–2055

    Article  CAS  Google Scholar 

  28. Kotera M et al (2013) KCF-S: KEGG chemical function and substructure for improved interpretability and prediction in chemical bioinformatics. BMC Syst Biol 7(Suppl 6):S2

    Article  Google Scholar 

  29. Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Informatics 33:719–731. https://doi.org/10.1002/minf.201400066

    Article  CAS  Google Scholar 

  30. http://matador.embl.de/

  31. https://www.ebi.ac.uk/chembl/

  32. https://kidbdev.med.unc.edu/databases/kidb.php

Download references

Acknowledgments

Funding from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Science and Technology Agency, and the Japan Society for the Promotion of Science; JSPS Kakenhi (25108714,). This work was also supported by the Program to Disseminate Tenure Tracking System, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Kotera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kotera, M. (2018). Physicochemical Property Labels as Molecular Descriptors for Improved Analysis of Compound–Protein and Compound–Compound Networks. In: Brown, J. (eds) Computational Chemogenomics. Methods in Molecular Biology, vol 1825. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8639-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8639-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8638-5

  • Online ISBN: 978-1-4939-8639-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics