Skip to main content

The Future of Computational Chemogenomics

  • Protocol
  • First Online:
Computational Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1825))

Abstract

Following the elucidation of the human genome, chemogenomics emerged in the beginning of the twenty-first century as an interdisciplinary research field with the aim to accelerate target and drug discovery by making best usage of the genomic data and the data linkable to it. What started as a systematization approach within protein target families now encompasses all types of chemical compounds and gene products. A key objective of chemogenomics is the establishment, extension, analysis, and prediction of a comprehensive SAR matrix which by application will enable further systematization in drug discovery. Herein we outline future perspectives of chemogenomics including the extension to new molecular modalities, or the potential extension beyond the pharma to the agro and nutrition sectors, and the importance for environmental protection. The focus is on computational sciences with potential applications for compound library design, virtual screening, hit assessment, analysis of phenotypic screens, lead finding and optimization, and systems biology-based prediction of toxicology and translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caron PR, Mullican MD, Mashal RD et al (2001) Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 5:464–470

    Article  CAS  PubMed  Google Scholar 

  2. Jacoby E (2001) A novel chemogenomics knowledge-based ligand design strategy—application to G protein-coupled receptors. Quant Struct Relationships 20:115–123. https://doi.org/10.1002/1521-3838(200107)20:2<115::AID-QSAR115>3.0.CO;2-V

    Article  CAS  Google Scholar 

  3. Jacoby E, Schuffenhauer A, Floersheim P (2003) Chemogenomics knowledge-based strategies in drug discovery. Drug News Perspect 16:93–102

    Article  CAS  PubMed  Google Scholar 

  4. Bleicher KH (2002) Chemogenomics: bridging a drug discovery gap. Curr Med Chem 9:2077–2084. https://doi.org/10.2174/0929867023368728

    Article  CAS  PubMed  Google Scholar 

  5. Klabunde T (2007) Chemogenomic approaches to drug discovery: similar receptors bind similar ligands. Br J Pharmacol 152:5–7. https://doi.org/10.1038/sj.bjp.0707308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lehmann J (1996) Redesigning drug discovery. Nature 384:1–5

    Google Scholar 

  7. Frye SV (1999) Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem Biol 6:R3–R7. https://doi.org/10.1016/S1074-5521(99)80013-1

    Article  CAS  PubMed  Google Scholar 

  8. O’Donoghue SI, Sabir KS, Kalemanov M et al (2015) Aquaria: simplifying discovery and insight from protein structures. Nat Methods 12:98–99. https://doi.org/10.1038/nmeth.3258

    Article  CAS  PubMed  Google Scholar 

  9. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5:262–275. https://doi.org/10.1038/nrg1317

    Article  CAS  PubMed  Google Scholar 

  10. Schuffenhauer A, Zimmermann J, Stoop R et al (2002) An ontology for pharmaceutical ligands and its application for in silico screening and library design. J Chem Inf Comput Sci 42:947–955

    Article  CAS  PubMed  Google Scholar 

  11. Renner S, Popov M, Schuffenhauer A et al (2011) Recent trends and observations in the design of high-quality screening collections. Future Med Chem 3:751–766. https://doi.org/10.4155/fmc.11.15

    Article  CAS  PubMed  Google Scholar 

  12. Sheppard DW, Lipkin MJ, Harris CJ et al (2014) Strategies for small molecule library design. Curr Pharm Des 20:3314–3322

    Article  CAS  PubMed  Google Scholar 

  13. Prathipati P, Mizuguchi K (2016) Systems biology approaches to a rational drug discovery paradigm. Curr Top Med Chem 16:1009–1025

    Article  CAS  PubMed  Google Scholar 

  14. Neves BJ, Braga RC, Bezerra JCB et al (2015) In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni. PLoS Negl Trop Dis 9:e3435. https://doi.org/10.1371/journal.pntd.0003435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saigo H, Vert J-P, Ueda N, Akutsu T (2004) Protein homology detection using string alignment kernels. Bioinformatics 20:1682–1689. https://doi.org/10.1093/bioinformatics/bth141

    Article  CAS  PubMed  Google Scholar 

  16. Meslamani J, Rognan D (2015) Protein-ligand pharmacophores: concept, design and applications. CICSJ Bull 33:27

    Google Scholar 

  17. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169. https://doi.org/10.1021/ci049885e

    Article  CAS  PubMed  Google Scholar 

  18. Hu B, Lill MA (2012) Protein pharmacophore selection using hydration-site analysis. J Chem Inf Model 52:1046–1060. https://doi.org/10.1021/ci200620h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rognan D (2014) Binding site similarity search to identify novel target-ligand complexes. In: Jacoby E (ed) Computational chemogenomics. Pan Stanford Publishing Pte. Ltd., Singapore, pp 171–194

    Google Scholar 

  20. Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98. https://doi.org/10.1038/nchem.1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider P, Rothlisberger M, Reker D, Schneider G (2015) Spotting and designing promiscuous ligands for drug discovery. Chem Commun (Camb) 52:1135–1138. https://doi.org/10.1039/c5cc07506h

    Article  CAS  Google Scholar 

  22. Jacoby E, Schuffenhauer A, Azzaoui K et al (2006) Small molecules for chemogenomics-based drug discovery. In: Jacoby E (ed) Chemogenomics knowledge-based approaches to drug discovery. World Scientific Publishing Co, Singapore, pp 1–38

    Chapter  Google Scholar 

  23. Jenkins JL (2012) Large-scale QSAR in target prediction and phenotypic HTS assessment. Mol Inform 31:508–514. https://doi.org/10.1002/minf.201200002

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins JL, Scheiber J, Mikkailov D et al (2011) Bridging chemical and biological information: implications for pharmaceutical drug discovery. In: Guha R, Bender A (eds) Computational approaches in cheminformatics and bioinformatics. Wiley, Hoboken, NJ, pp 25–55

    Chapter  Google Scholar 

  25. Hastings J, de Matos P, Dekker A et al (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41:D456–D463. https://doi.org/10.1093/nar/gks1146

    Article  CAS  PubMed  Google Scholar 

  26. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  27. Kringelum J, Kjaerulff SK, Brunak S et al (2016) ChemProt-3.0: a global chemical biology diseases mapping. Database (Oxford). https://doi.org/10.1093/database/bav123

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shah MA, Denton EL, Liu L, Schapira M (2014) ChromoHub V2: cancer genomics. Bioinformatics 30:590–592. https://doi.org/10.1093/bioinformatics/btt710

    Article  CAS  PubMed  Google Scholar 

  29. Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935. https://doi.org/10.1126/science.1132939

    Article  CAS  PubMed  Google Scholar 

  30. Chemotargets CTlink. http://www.chemotargets.com/. Accessed 18 Oct 2016

  31. Piñero J, Queralt-Rosinach N, Bravo À et al (2015) DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford) 2015:bav028. https://doi.org/10.1093/database/bav028

    Article  CAS  Google Scholar 

  32. Euretos Euretos Knowledge Platform

    Google Scholar 

  33. Gene Ontology Consortium TGO (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43:D1049–D1056. https://doi.org/10.1093/nar/gku1179

    Article  CAS  Google Scholar 

  34. GVK BIO online structure activity relationship database. https://www.gostardb.com/. Accessed 18 Oct 2016

  35. Zhang T, Li H, Xi H et al (2012) HELM: a hierarchical notation language for complex biomolecule structure representation. J Chem Inf Model 52:2796–2806. https://doi.org/10.1021/ci3001925

    Article  CAS  PubMed  Google Scholar 

  36. Southan C, Sharman JL, Benson HE et al (2016) The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res 44:D1054–D1068. https://doi.org/10.1093/nar/gkv1037

    Article  CAS  PubMed  Google Scholar 

  37. Eidogen-Sertanty Kinase Knowledgebase. http://www.eidogen.com/kinasekb.php. Accessed 18 Oct 2016

  38. Kooistra AJ, Kanev GK, van Linden OPJ et al (2016) KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res 44:D365–D371. https://doi.org/10.1093/nar/gkv1082

    Article  CAS  PubMed  Google Scholar 

  39. Doppelt-Azeroual O, Delfaud F, Moriaud F, de Brevern AG (2010) Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins. Protein Sci 19:847–867. https://doi.org/10.1002/pro.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Digles D, Zdrazil B, Neefs J-M et al (2016) Open PHACTS computational protocols for in silico target validation of cellular phenotypic screens: knowing the knowns. Med Chem Commun 7:1237–1244. https://doi.org/10.1039/C6MD00065G

    Article  CAS  Google Scholar 

  41. Jansen C, Kooistra AJ, Kanev GK et al (2016) PDEStrIAn: a phosphodiesterase structure and ligand interaction annotated database as a tool for structure-based drug design. J Med Chem 59:7029–7065. https://doi.org/10.1021/acs.jmedchem.5b01813

    Article  CAS  PubMed  Google Scholar 

  42. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  43. Elsevier Chemical Data Reaxys. https://www.elsevier.com/solutions/reaxys. Accessed 18 Oct 2016

  44. Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein-ligand interactions. J Mol Biol 326:607–620

    Article  CAS  PubMed  Google Scholar 

  45. Szklarczyk D, Santos A, von Mering C et al (2015) STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:gkv1277. https://doi.org/10.1093/nar/gkv1277

    Article  CAS  Google Scholar 

  46. Papadatos G, Davies M, Dedman N et al (2016) SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res 44:D1220–D1228. https://doi.org/10.1093/nar/gkv1253

    Article  CAS  PubMed  Google Scholar 

  47. Prous Institute Global Mechanism of Action (MoA) Model. http://symmetry.prousresearch.com/symmetry-models/. Accessed 18 Oct 2016

  48. Eidogen-Sertanty Targets Informatics Platform. http://www.eidogen-sertanty.com/tip.php. Accessed 24 Oct 2016

  49. Thomson Reuters Integrity. http://lifesciences.thomsonreuters.com/training/integrity. Accessed 18 Oct 2016

  50. Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307. https://doi.org/10.1093/nar/gkr1074

    Article  CAS  PubMed  Google Scholar 

  51. Tokarski JS, Zupa-Fernandez A, Tredup JA et al (2015) Tyrosine kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J Biol Chem 290:11061–11074. https://doi.org/10.1074/jbc.M114.619502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pierce AC, Rao G, Bemis GW (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J Med Chem 47:2768–2775. https://doi.org/10.1021/jm030543u

    Article  CAS  PubMed  Google Scholar 

  53. Oguievetskaia K, Martin-Chanas L, Vorotyntsev A et al (2009) Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site. J Comput Aided Mol Des 23:571–582. https://doi.org/10.1007/s10822-009-9286-z

    Article  CAS  PubMed  Google Scholar 

  54. Adams CL, Kutsyy V, Coleman DA et al (2006) Compound classification using image-based cellular phenotypes. Methods Enzymol 414:440–468. https://doi.org/10.1016/S0076-6879(06)14024-0

    Article  CAS  PubMed  Google Scholar 

  55. Reisen F, Sauty de Chalon A, Pfeifer M et al (2015) Linking phenotypes and modes of action through high-content screen fingerprints. Assay Drug Dev Technol 13:415–427. https://doi.org/10.1089/adt.2015.656

    Article  CAS  PubMed  Google Scholar 

  56. Reisen F, Zhang X, Gabriel D, Selzer P (2013) Benchmarking of multivariate similarity measures for high-content screening fingerprints in phenotypic drug discovery. J Biomol Screen 18:1284–1297. https://doi.org/10.1177/1087057113501390

    Article  CAS  PubMed  Google Scholar 

  57. Hieronymus H, Lamb J, Ross KN et al (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10:321–330. https://doi.org/10.1016/j.ccr.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  58. Kunkel SD, Suneja M, Ebert SM et al (2011) mRNA expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metab 13:627–638. https://doi.org/10.1016/j.cmet.2011.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taniguchi Y, Takeda S, Furutani-Seiki M et al (2006) Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biol 7:R116. https://doi.org/10.1186/gb-2006-7-12-r116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fonfara I, Richter H, Bratovič M et al (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521. https://doi.org/10.1038/nature17945

    Article  CAS  PubMed  Google Scholar 

  62. Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol 21:1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Labbé CM, Kuenemann MA, Zarzycka B et al (2016) iPPI-DB: an online database of modulators of protein-protein interactions. Nucleic Acids Res 44:D542–D547. https://doi.org/10.1093/nar/gkv982

    Article  CAS  PubMed  Google Scholar 

  64. Basse M-J, Betzi S, Morelli X, Roche P (2016) 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Database (Oxford) 2016:baw007. https://doi.org/10.1093/database/baw007

    Article  CAS  Google Scholar 

  65. Varki A, Cummings RD, Esko JD et al (2009) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  66. Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555. https://doi.org/10.1038/nrc3982

    Article  CAS  PubMed  Google Scholar 

  67. Lopez-Sambrooks C, Shrimal S, Khodier C et al (2016) Oligosaccharyltransferase inhibition induces senescence in RTK-driven tumor cells. Nat Chem Biol 12:1023–1030. https://doi.org/10.1038/nchembio.2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. NIH Common Fund Molecular Libraries and Imaging. https://commonfund.nih.gov/molecularlibraries/index. Accessed 18 Oct 2016

  69. Kramer C, Lewis R (2012) QSARs, data and error in the modern age of drug discovery. Curr Top Med Chem 12:1896–1902

    Article  CAS  PubMed  Google Scholar 

  70. Fourches D, Muratov E, Tropsha A (2015) Curation of chemogenomics data. Nat Chem Biol 11:535. https://doi.org/10.1038/nchembio.1881

    Article  CAS  PubMed  Google Scholar 

  71. Fourches D, Muratov E, Tropsha A (2016) Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model 56:1243–1252. https://doi.org/10.1021/acs.jcim.6b00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuhn M, von Mering C, Campillos M et al (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688. https://doi.org/10.1093/nar/gkm795

    Article  CAS  PubMed  Google Scholar 

  73. Kuhn M, Szklarczyk D, Franceschini A et al (2010) STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res 38:D552–D556. https://doi.org/10.1093/nar/gkp937

    Article  CAS  PubMed  Google Scholar 

  74. Kuhn M, Szklarczyk D, Franceschini A et al (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res 40:D876–D880. https://doi.org/10.1093/nar/gkr1011

    Article  CAS  PubMed  Google Scholar 

  75. Kuhn M, Szklarczyk D, Pletscher-Frankild S et al (2014) STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 42:D401–D407. https://doi.org/10.1093/nar/gkt1207

    Article  CAS  PubMed  Google Scholar 

  76. Pistoia Alliance Hierarchical Editing Language for Macromolecules. http://www.pistoiaalliance.org/projects/hierarchical-editing-language-for-macromolecules-helm/. Accessed 18 Oct 2016

  77. Azzaoui K, Jacoby E, Senger S et al (2013) Scientific competency questions as the basis for semantically enriched open pharmacological space development. Drug Discov Today 18:843–852. https://doi.org/10.1016/j.drudis.2013.05.008

    Article  PubMed  Google Scholar 

  78. Ratnam J, Zdrazil B, Digles D et al (2014) The application of the open pharmacological concepts triple store (open PHACTS) to support drug discovery research. PLoS One 9:e115460. https://doi.org/10.1371/journal.pone.0115460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu Q, Sun Y, Challa S et al (2011) Semantic inference using chemogenomics data for drug discovery. BMC Bioinformatics 12:256. https://doi.org/10.1186/1471-2105-12-256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen B, Ding Y, Wild DJ (2012) Assessing drug target association using semantic linked data. PLoS Comput Biol 8:e1002574. https://doi.org/10.1371/journal.pcbi.1002574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Petrone PM, Wassermann AM, Lounkine E et al (2013) Biodiversity of small molecules—a new perspective in screening set selection. Drug Discov Today 18:674–680. https://doi.org/10.1016/j.drudis.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  82. Helal KY, Maciejewski M, Gregori-Puigjané E et al (2016) Public domain HTS fingerprints: design and evaluation of compound bioactivity profiles from PubChem’s bioassay repository. J Chem Inf Model 56:390–398. https://doi.org/10.1021/acs.jcim.5b00498

    Article  CAS  PubMed  Google Scholar 

  83. Brown JB, Niijima S, Okuno Y (2013) Compound-protein interaction prediction within chemogenomics: theoretical concepts, practical usage, and future directions. Mol Inform 32:906–921. https://doi.org/10.1002/minf.201300101

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X-P, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci U S A 106:12245–12250. https://doi.org/10.1073/pnas.0813088106

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tyson JJ (2006) Another turn for p53. Mol Syst Biol. https://doi.org/10.1038/msb4100060

  86. Hat B, Kochańczyk M, Bogdał MN, Lipniacki T (2016) Feedbacks, bifurcations, and cell fate decision-making in the p53 system. PLoS Comput Biol 12:e1004787. https://doi.org/10.1371/journal.pcbi.1004787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mukherjee P, Martin E (2011) Development of a minimal kinase ensemble receptor (MKER) for surrogate AutoShim. J Chem Inf Model 51:2697–2705. https://doi.org/10.1021/ci200234p

    Article  CAS  PubMed  Google Scholar 

  88. Mukherjee P, Martin E (2012) Profile-QSAR and Surrogate AutoShim protein-family modeling of proteases. J Chem Inf Model 52:2430–2440. https://doi.org/10.1021/ci300059d

    Article  CAS  PubMed  Google Scholar 

  89. Martin E, Mukherjee P (2012) Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome. J Chem Inf Model 52:156–170. https://doi.org/10.1021/ci200314j

    Article  CAS  PubMed  Google Scholar 

  90. Bosc N, Wroblowski B, Aci-Sèche S et al (2015) A proteometric analysis of human kinome: insight into discriminant conformation-dependent residues. ACS Chem Biol 10:2827–2840. https://doi.org/10.1021/acschembio.5b00555

    Article  CAS  PubMed  Google Scholar 

  91. Hambly K, Danzer J, Muskal S, Debe DA (2006) Interrogating the druggable genome with structural informatics. Mol Divers 10:273–281. https://doi.org/10.1007/s11030-006-9035-3

    Article  CAS  PubMed  Google Scholar 

  92. Christmann-Franck S, van Westen GJP, Papadatos G et al (2016) Unprecedently large-scale kinase inhibitor set enabling the accurate prediction of compound–kinase activities: a way toward selective promiscuity by design? J Chem Inf Model 56:1654–1675. https://doi.org/10.1021/acs.jcim.6b00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367. https://doi.org/10.1038/nature11159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schneider P, Röthlisberger M, Reker D et al (2016) Spotting and designing promiscuous ligands for drug discovery. Chem Commun 52:1135–1138. https://doi.org/10.1039/C5CC07506H

    Article  CAS  Google Scholar 

  95. Unterthiner T, Mayr A, Klambauer G et al (2014) Deep learning for drug target prediction. Work. Represent. Learn. Methods complex outputs

    Google Scholar 

  96. Paolini GV, Shapland RHB, van Hoorn WP et al (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815. https://doi.org/10.1038/nbt1228

    Article  CAS  PubMed  Google Scholar 

  97. Bender A, Young DW, Jenkins JL et al (2007) Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint. Comb Chem High Throughput Screen 10:719–731

    Article  CAS  PubMed  Google Scholar 

  98. Cheng F, Zhou Y, Li J et al (2012) Prediction of chemical-protein interactions: multitarget-QSAR versus computational chemogenomic methods. Mol BioSyst 8:2373–2384. https://doi.org/10.1039/c2mb25110h

    Article  CAS  PubMed  Google Scholar 

  99. Brown JB, Okuno Y, Marcou G et al (2014) Computational chemogenomics: is it more than inductive transfer? J Comput Aided Mol Des 28:597–618. https://doi.org/10.1007/s10822-014-9743-1

    Article  CAS  PubMed  Google Scholar 

  100. van Westen GJ, Swier RF, Cortes-Ciriano I et al (2013) Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. J Cheminform 5:42. https://doi.org/10.1186/1758-2946-5-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Besnard J, Ruda GF, Setola V et al (2012) Automated design of ligands to polypharmacological profiles. Nature 492:215–220

    Article  CAS  PubMed  Google Scholar 

  102. Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111:4067–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yabuuchi H, Niijima S, Takematsu H et al (2011) Analysis of multiple compound–protein interactions reveals novel bioactive molecules. Mol Syst Biol. https://doi.org/10.1038/msb.2011.5

    Article  Google Scholar 

  104. Simm J, Arany A, Zakeri P et al (2015) Macau: scalable Bayesian multi-relational factorization with side information using MCMC. arXiv:1509.04610

    Google Scholar 

  105. Arany A, Simm J, Zakeri P et al (2015) Highly scalable tensor factorization for prediction of drug-protein interaction type. arXiv:1512.00315

    Google Scholar 

  106. Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 101:4164–4169. https://doi.org/10.1073/pnas.0308531101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hofree M, Shen JP, Carter H et al (2013) Network-based stratification of tumor mutations. Nat Methods 10:1108–1115. https://doi.org/10.1038/nmeth.2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wawer MJ, Li K, Gustafsdottir SM et al (2014) Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc Natl Acad Sci U S A 111:10911–10916. https://doi.org/10.1073/pnas.1410933111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wassermann AM, Lounkine E, Glick M (2013) Bioturbo similarity searching: combining chemical and biological similarity to discover structurally diverse bioactive molecules. J Chem Inf Model 53:692–703. https://doi.org/10.1021/ci300607r

    Article  CAS  PubMed  Google Scholar 

  110. Garcia-Serna R, Vidal D, Remez N, Mestres J (2015) Large-scale predictive drug safety: from structural alerts to biological mechanisms. Chem Res Toxicol 28:1875–1887. https://doi.org/10.1021/acs.chemrestox.5b00260

    Article  CAS  PubMed  Google Scholar 

  111. Kadoyama K, Kuwahara A, Yamamori M et al (2011) Hypersensitivity reactions to anticancer agents: data mining of the public version of the FDA adverse event reporting system, AERS. J Exp Clin Cancer Res 30:93. https://doi.org/10.1186/1756-9966-30-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kadoyama K, Miki I, Tamura T et al (2012) Adverse event profiles of 5-fluorouracil and capecitabine: data mining of the public version of the FDA Adverse Event Reporting System, AERS, and reproducibility of clinical observations. Int J Med Sci 9:33–39

    Article  CAS  PubMed  Google Scholar 

  113. Kimura G, Kadoyama K, Brown JB et al (2015) Antipsychotics-associated serious adverse events in children: an analysis of the FAERS database. Int J Med Sci 12:135–140. https://doi.org/10.7150/ijms.10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Remez N, Garcia-Serna R, Vidal D, Mestres J (2016) The in vitro pharmacological profile of drugs as a proxy indicator of potential in vivo organ toxicities. Chem Res Toxicol 29:637–648. https://doi.org/10.1021/acs.chemrestox.5b00470

    Article  CAS  PubMed  Google Scholar 

  115. Kufareva I, Ilatovskiy AV, Abagyan R (2012) Pocketome: an encyclopedia of small-molecule binding sites in 4D. Nucleic Acids Res 40:D535–D540. https://doi.org/10.1093/nar/gkr825

    Article  CAS  PubMed  Google Scholar 

  116. Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites—10 years on. Nucleic Acids Res 43:D399–D404. https://doi.org/10.1093/nar/gku928

    Article  CAS  PubMed  Google Scholar 

  117. Moriaud F, Richard SB, Adcock SA et al (2011) Identify drug repurposing candidates by mining the protein data bank. Brief Bioinform 12:336–340. https://doi.org/10.1093/bib/bbr017

    Article  CAS  PubMed  Google Scholar 

  118. Vieth M, Higgs RE, Robertson DH et al (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta 1697:243–257. https://doi.org/10.1016/j.bbapap.2003.11.028

    Article  CAS  PubMed  Google Scholar 

  119. Batista J, Hawkins PC, Tolbert R, Geballe MT (2014) SiteHopper – a unique tool for binding site comparison. J Cheminform 6:P57. https://doi.org/10.1186/1758-2946-6-S1-P57

    Article  PubMed Central  Google Scholar 

  120. Bajorath J (2008) Computational approaches in chemogenomics and chemical biology: current and future impact on drug discovery. Expert Opin Drug Discov 3:1371–1376. https://doi.org/10.1517/17460440802536496

    Article  CAS  PubMed  Google Scholar 

  121. Hu Y, Furtmann N, Bajorath J (2015) Current compound coverage of the kinome. J Med Chem 58:30–40. https://doi.org/10.1021/jm5008159

    Article  CAS  PubMed  Google Scholar 

  122. Hu Y, Bajorath J (2015) Exploring the scaffold universe of kinase inhibitors. J Med Chem 58:315–332. https://doi.org/10.1021/jm501237k

    Article  CAS  PubMed  Google Scholar 

  123. Furtmann N, Hu Y, Bajorath J (2015) Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues. J Med Chem 58:252–264. https://doi.org/10.1021/jm5009264

    Article  CAS  PubMed  Google Scholar 

  124. Dimova D, Stumpfe D, Bajorath J (2015) Systematic assessment of coordinated activity cliffs formed by kinase inhibitors and detailed characterization of activity cliff clusters and associated SAR information. Eur J Med Chem 90:414–427. https://doi.org/10.1016/j.ejmech.2014.11.058

    Article  CAS  PubMed  Google Scholar 

  125. Gupta-Ostermann D, Bajorath J (2014) The “SAR Matrix” method and its extensions for applications in medicinal chemistry and chemogenomics. F1000Res 3:113. https://doi.org/10.12688/f1000research.4185.2

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lounkine E, Kutchukian P, Petrone P et al (2012) Chemotography for multi-target SAR analysis in the context of biological pathways. Bioorg Med Chem 20:5416–5427. https://doi.org/10.1016/j.bmc.2012.02.034

    Article  CAS  PubMed  Google Scholar 

  127. Palacino J, Swalley SE, Song C et al (2015) SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat Chem Biol 11:511–517. https://doi.org/10.1038/nchembio.1837

    Article  CAS  PubMed  Google Scholar 

  128. Naryshkin NA, Weetall M, Dakka A et al (2014) Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–693. https://doi.org/10.1126/science.1250127

    Article  CAS  PubMed  Google Scholar 

  129. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638. https://doi.org/10.1038/nrd4359

    Article  CAS  PubMed  Google Scholar 

  130. Murakami R, Matsumura N, Brown JB et al (2016) Prediction of taxane and platinum sensitivity in ovarian cancer based on gene expression profiles. Gynecol Oncol 141:49–56. https://doi.org/10.1016/j.ygyno.2016.02.027

    Article  CAS  PubMed  Google Scholar 

  131. Di Giorgio A, Tran TPA, Duca M (2016) Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med Chem 8:803–816. https://doi.org/10.4155/fmc-2016-0018

    Article  CAS  PubMed  Google Scholar 

  132. Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10:291–297. https://doi.org/10.1038/nchembio.1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gaulton A, Kale N, van Westen GJP et al (2015) A large-scale crop protection bioassay data set. Sci Data 2:150032. https://doi.org/10.1038/sdata.2015.32

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hait WN, Levine AJ (2014) Genomic complexity: a call to action. Sci Transl Med 6:255cm10. https://doi.org/10.1126/scitranslmed.3009148

    Article  CAS  PubMed  Google Scholar 

  135. Hait WN, Lebowitz PF (2016) Disease interception: myths, mountains, and mole hills. Cancer Prev Res (Phila) 9:635–637. https://doi.org/10.1158/1940-6207.CAPR-16-0049

    Article  CAS  Google Scholar 

  136. McHardy IH, Goudarzi M, Tong M et al (2013) Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome 1:17. https://doi.org/10.1186/2049-2618-1-17

    Article  PubMed  PubMed Central  Google Scholar 

  137. US Environmental Protection Agency Toxicity Forecasting (ToxCast). doi:https://www.epa.gov/chemical-research/toxicity-forecasting

  138. US Environmental Protection Agency Toxicology Testing in the 21st Century (Tox21). https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21. Accessed 18 Oct 2016

  139. Igarashi Y, Nakatsu N, Yamashita T et al (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921–D927. https://doi.org/10.1093/nar/gku955

    Article  CAS  PubMed  Google Scholar 

  140. Innovative Medicines Initiative eTox. https://www.imi.europa.eu/content/etox. Accessed 18 Oct 2016

  141. Pregitzer CC, Bailey JK, Schweitzer JA (2013) Genetic by environment interactions affect plant-soil linkages. Ecol Evol 3:2322–2333. https://doi.org/10.1002/ece3.618

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Drs. Hugo Ceulemans, Gerhard Gross, Jean-Marc Neefs, Vineet Pande, Herman Van Vlijmen, and Jörg Wegner (all Janssen associates) are gratefully acknowledged for discussions. Dr. Marco Candeias of Kyoto University provided insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Jacoby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacoby, E., Brown, J.B. (2018). The Future of Computational Chemogenomics. In: Brown, J. (eds) Computational Chemogenomics. Methods in Molecular Biology, vol 1825. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8639-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8639-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8638-5

  • Online ISBN: 978-1-4939-8639-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics