Skip to main content

SAR Matrix Method for Large-Scale Analysis of Compound Structure–Activity Relationships and Exploration of Multitarget Activity Spaces

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1825))

Abstract

As the number of compounds and the volume of bioactivity data rapidly grow, advanced computational methods are required to study structure–activity relationships (SARs) on a large scale. Herein, the SAR matrix (SARM) methodology is described that was designed to systematically extract structural relationships between bioactive compounds from large databases, explore structure–activity relationships, and navigate multitarget activity spaces, which is one of the core tasks in chemogenomics. In addition, the SARM approach was designed to visualize structural and structure–activity relationships, which is often of critical importance for making this information available in an intuitive form for practical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hu Y, Bajorath J (2014) Learning from ‘big data’: compounds and targets. Drug Discov Today 19:357–360

    Article  Google Scholar 

  2. Dossetter AG, Ecker G, Laverty H, Overington J (2014) ‘Big data’ in pharmaceutical science: challenges and opportunities. Future Med Chem 6:857–864

    Article  Google Scholar 

  3. Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J (2014) Data-driven medicinal chemistry in the era of big data. Drug Discov Today 19:859–868

    Article  CAS  Google Scholar 

  4. Richter L, Ecker GF (2015) Medicinal chemistry in the era of big data. Drug Discov Today Technol 14:37–41

    Article  Google Scholar 

  5. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657

    Article  CAS  Google Scholar 

  6. Jacoby E (2006) Chemogenomics: drug discovery’s panacea? Mol BioSyst 2:218–220

    Article  CAS  Google Scholar 

  7. Lu JJ, Pan W, Hu YJ, Wang YT (2012) Multi-target drugs: the trend of drug research and development. PLoS One 7:e40262

    Article  CAS  Google Scholar 

  8. Jalencas X, Mestres J (2012) On the origins of drug polypharmacology. Med Chem Commun 4:80–87

    Article  Google Scholar 

  9. Hu Y, Bajorath J (2013) Compound promiscuity—what can we learn from current data. Drug Discov Today 18:644–650

    Article  CAS  Google Scholar 

  10. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887

    Article  CAS  Google Scholar 

  11. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  Google Scholar 

  12. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090

    Article  CAS  Google Scholar 

  13. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z (2012) PubChem’s BioAssay database. Nucleic Acids Res 40:D400–D412

    Article  CAS  Google Scholar 

  14. Hu Y, Bajorath J (2014) Influence of search parameters and criteria on compound selection, promiscuity, and pan assay interference characteristics. J Chem Inf Model 54:3056–3066

    Article  CAS  Google Scholar 

  15. Hu Y, Bajorath J (2014) Monitoring drug promiscuity over time. F1000Res 3:218

    PubMed  PubMed Central  Google Scholar 

  16. Hu Y, Jasial S, Bajorath J (2015) Promiscuity progression of bioactive compounds over time. F1000Res 4:118

    PubMed  PubMed Central  Google Scholar 

  17. OEChem, version 1.7.7 (2012) OpenEye Scientific Software, Inc., Santa Fe, NM. http://www.eyesopen.com

  18. Kenny PW, Sadowski J (2004) In: Oprea TI (ed) Chemoinformatics in drug discovery. Wiley-VCH, Weinheim, pp 271–285

    Google Scholar 

  19. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    Article  CAS  Google Scholar 

  20. Wassermann AM, Bajorath J (2010) Chemical substitutions that introduce activity cliffs across different compound classes and biological targets. J Chem Inf Model 50:1248–1256

    Article  CAS  Google Scholar 

  21. Wawer M, Bajorath J (2011) Local structural changes, global data views: graphical substructure-activity relationship trailing. J Med Chem 54:2944–2951

    Article  CAS  Google Scholar 

  22. Wassermann AM, Haebel P, Weskamp N, Bajorath J (2012) SAR matrices: automated extraction of information-rich SAR tables from large compound data sets. J Chem Inf Model 52:1769–1776

    Article  CAS  Google Scholar 

  23. Wassermann AM, Bajorath J (2011) A data mining method to facilitate SAR transfer. J Chem Inf Model 51:1857–1866

    Article  CAS  Google Scholar 

  24. Gupta-Ostermann D, Hu Y, Bajorath J (2013) Systematic mining of analog series with related core structures in multi-target activity space. J Comput Aided Mol Des 27:665–674

    Article  CAS  Google Scholar 

  25. Shanmugasundaram V, Zhang L, Kayastha S, de la Vega de León A, Dimova D, Bajorath J (2016) Monitoring the progression of structure-activity relationship information during lead optimization. J Med Chem 59:4235–4244

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank OpenEye Scientific Software, Inc. for a free academic license of the OpenEye Toolkits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hu, Y., Bajorath, J. (2018). SAR Matrix Method for Large-Scale Analysis of Compound Structure–Activity Relationships and Exploration of Multitarget Activity Spaces. In: Brown, J. (eds) Computational Chemogenomics. Methods in Molecular Biology, vol 1825. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8639-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8639-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8638-5

  • Online ISBN: 978-1-4939-8639-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics