Skip to main content

Model Legumes: Functional Genomics Tools in Medicago truncatula

  • Protocol
  • First Online:
Functional Genomics in Medicago truncatula

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1822))

Abstract

Many researchers have sought along the last two decades a legume species that could serve as a model system for genetic studies to resolve specific developmental or metabolic processes that cannot be studied in other model plants. Nitrogen fixation, nodulation, compound leaf, inflorescence and plant architecture, floral development, pod formation, secondary metabolite biosynthesis, and other developmental and metabolic aspects are legume-specific or show important differences with those described in Arabidopsis thaliana, the most studied model plant. Mainly Medicago truncatula and Lotus japonicus were proposed in the 1990s as model systems due to their key attributes, diploid genome, autogamous nature, short generation times, small genome sizes, and both species can be readily transformed. After more than decade-long, the genome sequences of both species are essentially complete, and a series of functional genomics tools have been successfully developed and applied. Mutagens that cause insertions or deletions are being used in these model systems because these kinds of DNA rearrangements are expected to assist in the isolation of the corresponding genes by Target-Induced Local Lesions IN Genomes (TILLING) approaches. Different M. truncatula mutants have been obtained following γ-irradiation or fast neutron bombardment (FNB), ethyl-nitrosourea (ENU) or ethyl-methanesulfonate (EMS) treatments, T-DNA and activation tagging, use of the tobacco retrotransposon Tnt1 to produce insertional mutants, gene silencing by RNAi, and transient post-transcriptional gene silencing by virus-induced gene silencing (VIGS). Emerging technologies of targeted mutagenesis and gene editing, such as the CRISPR-Cas9 system, could open a new era in this field. Functional genomics tools and phenotypic analyses of several mutants generated in M. truncatula have been essential to better understand differential aspects of legumes development and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azani N, Babineau M, Bailey CD et al (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. The legume phylogeny working group (LPWG). Taxon 66(1):44–47

    Article  Google Scholar 

  2. Young ND, Debellé F, Oldroyd GED et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cannon SB (2013) The model legumes genomes. Methods Mol Biol 1069:1–14

    Article  PubMed  CAS  Google Scholar 

  4. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sommer H, Beltran JP, Huijser P et al (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Benlloch R, Navarro C, Beltrán JP et al (2003) Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex Plant Reprod 15(5):231–241

    Google Scholar 

  7. Tucker SC (1989) Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). Am J Bot 76:714–729

    Article  Google Scholar 

  8. Tucker SC (2003) Floral development in legumes. Plant Physiol 131:911926

    Article  CAS  Google Scholar 

  9. Ferrandiz C, Navarro C, Gomez MD et al (1999) Flower development in Pisum sativum: from the war of the whorls to the battle of the common primordia. Dev Genet 25:280–290

    Article  PubMed  CAS  Google Scholar 

  10. Kamenetsky R, Akhmetova M (1994) Floral development of Eremurus-Altaicus (Liliaceae). Israel J Plant Sci 42:227–233

    Article  Google Scholar 

  11. Delaet J, Clinckemaillie D, Jansen S et al (1995) Floral ontogeny in the Plumbaginaceae. J Plant Res 108:289–304

    Article  Google Scholar 

  12. Evans RC, Dickinson TA (1996) North-American black-fruited hawthorns. 2. Floral development of 10-stamen morphotypes in Crataegus section Douglasii (Rosaceae, Maloideae). Am J Bot 83:961–978

    Article  Google Scholar 

  13. Kirchoff BK (1997) Inflorescence and flower development in the Hedychieae (Zingiberaceae) – Hedychium. Can J Bot 75:581–594

    Article  Google Scholar 

  14. Barker DG, Bianchi S, Blondon F et al (1990) Medicago truncatula, A model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol Rep 8:40–49

    Article  CAS  Google Scholar 

  15. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  16. Cook DR (1999) Medicago truncatula--a model in the making! Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  17. Kijne J (1992) The rhizobium infection process. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. New York, Chapman and Hall, pp 349–398

    Google Scholar 

  18. Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbiosis: what are the shared features? Plant Cell 8:1899–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tattersall AD, Turner L, Knox MR et al (2005) The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17:1046–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hofer J, Turner L, Moreau C et al (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21:420–428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jing R, Knox MR, Lee JM et al (2005) Insertional polymorphism and antiquity of PDR1 retrotransposon insertions in Pisum species. Genetics 171:741–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gao Z, Eyers S, Thomas C et al (2004) Identification of markers tightly linked to sbm recessive genes for resistance to pea seedborne mosaic virus. Theor Appl Genet 109:488–494

    PubMed  CAS  Google Scholar 

  23. Barratt DH, Barber L, Kruger NJ et al (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Boyer F-D, de Saint Germain A, Pillot J-P et al (2012) Strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol 159(4):1524–1544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Benlloch R, Berbel A, Ali L et al (2015) Genetic control of inflorescence architecture in legumes. Front Plant Sci 6:543

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berbel A, Navarro C, Ferrandiz C et al (2001) Analysis of PEAM4, the pea AP1 functional homolog, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451

    Article  PubMed  CAS  Google Scholar 

  28. Berbel A, Navarro C, Ferrándiz C et al (2005) Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiol 139:174–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Benlloch R, d’Erfurth I, Ferrandiz C et al (2006) Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142:972–983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Benlloch R, Berbel A, Serrano-Mislata A et al (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    Article  PubMed  PubMed Central  Google Scholar 

  31. Benlloch R, Roque E, Ferràndiz C et al (2009) Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J 60(1):102–111

    Article  PubMed  CAS  Google Scholar 

  32. Roque E, Serwatowska J, Rochina MC et al (2013) Functional specialization of duplicated AP3-like genes in Medicago truncatula. Plant J 73:663–675

    Article  PubMed  CAS  Google Scholar 

  33. Serwatowska J, Roque E, Gómez-Mena C et al (2014) Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS One 9:e103770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Roque E, Fares MA, Yenush L et al (2016) Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors. J Exp Bot 67(6):1805–1817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Vodkin L, Jones S, Gonzalez DO et al (2008) Genomics of soybean seed development. In: Stacey G (ed) Plant genetics and genomics: crops and models, Genetics and genomics of soybean, vol 2. Springer, NY, pp 163–184

    Google Scholar 

  36. Kwak M, Velasco D, Gepts P (2008) Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris). J Hered 99:283–291

    Article  PubMed  CAS  Google Scholar 

  37. Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12(2):193–201

    Article  PubMed  CAS  Google Scholar 

  38. Gepts P, Beavis WD, Brummer EC et al (2005) Legumes as a model plant family: genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  40. Xie DY, Sharma SB, Wright E et al (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  PubMed  CAS  Google Scholar 

  41. Farag MA, Huhman DV, Dixon RA et al (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in Phenylpropanoid and Isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146(2):387–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ha CM, Escamilla-Trevino L, Yarce JC et al (2016) An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J 86:363–375

    Article  CAS  PubMed  Google Scholar 

  43. Mouradov A, Spangenberg G (2014) Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci 5:620

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang DL, Li Q, Deng YW et al (2008) Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1:528–537

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lesins KA, Lesins I (1979) Genus Medicago (Leguminosae). A taxogenetic study. Dr W Yung bv Publishers, The Hague, p 228

    Book  Google Scholar 

  47. Iantcheva A, Vassileva V, Ugrinova M et al (2009) Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol Biotechnol Equip 23(4):1440–1443

    Article  CAS  Google Scholar 

  48. Panara F, Calderini O, Porceddu A (2012) Medicago truncatula functional genomics – an invaluable resource for studies on agriculture sustainability. In: Meroni G, Petrera F (eds) Biochemistry, genetics and molecular biology “functional genomics”. InTech. https://doi.org/10.5772/51016

  49. Kang Y, Li M, Sinharoy S, Verdier J (2016) A snapshot of functional genetic studies in Medicago truncatula. Front Plant Sci 7:1175

    PubMed  PubMed Central  Google Scholar 

  50. Cook DR, VandenBosch K, de Bruijn FJ (1997) Model legumes get the nod. Plant Cell 9(3):275

    Article  PubMed Central  CAS  Google Scholar 

  51. Taylor S, Hofer J, Ian Murfet I (2001) Stamina pistilloida, the pea Ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves. Plant Cell 13(1):31–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sagan M, Morandi D, Tarenghi E et al (1997) Selection of nodulation and mycorrhizal mutants in the model plant Medicago truncatula (Gaertn.) after γ-ray mutagenesis. Plant Sci 111:63–71

    Article  Google Scholar 

  53. Oldroyd G (2003) Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in nod factor signaling. Plant Physiol 131(3):1027–1032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Schnabel E, Journet EP, de Carvalho-Niebel F et al (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58(6):809–822

    Article  CAS  PubMed  Google Scholar 

  55. Starker CG, Parra-Colmenares AL, Smith L et al (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140(2):671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang H (2006) Fast neutron bombardment (FNB) mutagenesis for forward and reverse genetic studies in plants. Global Science Books, Isleworth, pp 629–639

    Google Scholar 

  57. Middleton PH, Jakab J, Penmetsa RV et al (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19(4):1221–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Vernié T, Moreau S, de Billy F et al (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20(10):2696–2713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rogers C, Wen J, Chen R et al (2009) Deletion-based reverse genetics in Medicago truncatula. Plant Physiol 151(3):1077–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen J, Yu J, Ge L et al (2010) Control of dissected leaf morphology by a Cys(2)his(2) zinc finger transcription factor in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 107(23):10754–10759

    Article  PubMed  PubMed Central  Google Scholar 

  61. Peng J, Yu J, Wang H et al (2011) Regulation of compound leaf development in Medicago truncatula by Fused Compound Leaf1, a class M KNOX gene. Plant Cell 23:3929–3943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant-Microbe Interact 24(6):631–639

    Article  PubMed  CAS  Google Scholar 

  63. Murray JD, Muni RRD, Torres-Jerez I et al (2011) Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. Plant J 65(2):244–252

    Article  CAS  PubMed  Google Scholar 

  64. Mitra RM, Gleason CA, Edwards A et al (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Science 101(13):4701

    CAS  Google Scholar 

  65. Senthil-Kumar M, Mysore K (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665

    Article  PubMed  CAS  Google Scholar 

  66. Grønlund M, Constantin G, Piednoir E et al (2008) Virus induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res 135:345–349

    Article  PubMed  CAS  Google Scholar 

  67. Várallyay E, Lichner Z, Sáfrány J et al (2010) Development of a virus induced gene silencing vector from a legumes infecting tobamovirus. Acta Biol Hung 61(4):457–469

    Article  PubMed  CAS  Google Scholar 

  68. Ané JM, Kiss GB, Riely BK et al (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303(5662):1364–1367

    Article  CAS  PubMed  Google Scholar 

  69. Kalò P, Gleason C, Edwards A et al (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308(5729):1786–1789

    Article  PubMed  CAS  Google Scholar 

  70. Ivashuta S, Liu J, Lohar DP et al (2005) RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development. Plant Cell 17(11):2911–2921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Limpens E, Mirabella R, Fedorova E et al (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci U S A 102(29):10375–10380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Arrighi JF, Barre A, Amor BB et al (2006) The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142(1):265–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25(2):156–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wasson AP, Pellerone FI (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18(7):1617–1629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Gargantini PR, Gonzalez-Rizzo S, Chinchilla D et al (2006) A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant J 48(6):843–856

    Article  PubMed  CAS  Google Scholar 

  76. Colditz F, Niehaus K, Krajinski F (2007) Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches. Planta 226(1):57–71

    Article  PubMed  CAS  Google Scholar 

  77. Kevei Z, Lougnon G, Mergaert P et al (2007) 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell 19(12):3974–3989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Javot H, Penmetsa RV, Terzaghi N et al (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104(5):1720–1725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Messinese E, Mun JH, Yeun LH et al (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20(8):912–921

    Article  CAS  PubMed  Google Scholar 

  80. Rosnoblet C, Aubry C, Leprince O et al (2007) The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds. Plant J 51(1):47–59

    Article  PubMed  CAS  Google Scholar 

  81. Wan X, Hontelez J, Lillo A et al (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58(8):2033–2041

    Article  PubMed  CAS  Google Scholar 

  82. Zhang J, Subramanian S, Zhang Y et al (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144(2):741–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Floss DS, Hause B, Lange PR et al (2008) Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56(1):86–100

    Article  PubMed  CAS  Google Scholar 

  84. Floss DS, Schliemann W, Schmidt JÃ et al (2008) RNA interferencemediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol 148(3):1267–1282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Chen SK, Kurdyukov S, Kereszt A et al (2009) The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta 230(4):827–840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Pii Y, Astegno A, Peroni E et al (2009) The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant-Microbe Interact 22(12):1577–1587

    Article  PubMed  CAS  Google Scholar 

  87. de Lorenzo L, Merchan F, Laporte P et al (2009) A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21(2):668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kuppusamy KT, Ivashuta S, Bucciarelli B et al (2009) Knockdown of CELL DIVISION CYCLE16 reveals an inverse relationship between lateral root and nodule numbers and a link to auxin in Medicago truncatula. Plant Physiol 151(3):1155–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Peleg-Grossman S, Golani Y, Kaye Y et al (2009) NPR1 protein regulates pathogenic and symbiotic interactions between rhizobium and legumes and non-legumes. PLoS One 4(12):e8399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Laporte P, Satiat-Jeunemaìtre B, Velasco I et al (2010) A novel RNA-binding peptide regulates the establishment of the Medicago truncatula-Sinorhizobium meliloti nitrogen-fixing symbiosis. Plant J 62(1):24–38

    Article  PubMed  CAS  Google Scholar 

  91. Lefebvre B, Timmers T, Mbengue M et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107(5):2343–2348

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pumplin N, Mondo SJ, Topp S et al (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61(3):482–494

    Article  PubMed  CAS  Google Scholar 

  93. Zhou R, Jackson L, Shadle G et al (2010) Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci U S A 107(41):17803–17808

    Article  PubMed  PubMed Central  Google Scholar 

  94. Haney CH (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107(1):478–483

    Article  PubMed  Google Scholar 

  95. Kuhn H, Kùster RN (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185(3):716–733

    Article  PubMed  CAS  Google Scholar 

  96. Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Gòbel C et al (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189(2):568–579

    Article  PubMed  CAS  Google Scholar 

  97. Msehli SE, Lambert A, Baldacci-Cresp F et al (2011) Crucial role of (homo) glutathione in nitrogen fixation in Medicago truncatula nodules. New Phytol 192(2):496–506

    Article  PubMed  CAS  Google Scholar 

  98. Gimeno-Gilles C, Gervais ML, Planchet E et al (2011) A stress-associated protein containing A20/AN1 zing-finger domains expressed in Medicago truncatula seeds. Plant Physiol Biochem 49(3):303–310

    Article  PubMed  CAS  Google Scholar 

  99. Horchani F, Prèvot M, Boscari A et al (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155(2):1023–1036

    Article  CAS  PubMed  Google Scholar 

  100. Pauly N, Ferrari C, Andrio E et al (2011) MtNOA1/RIF1 modulates Medicago truncatula-Sinorhizobium meliloti nodule development without affecting its nitric oxide content. J Exp Bot 62(3):939–948

    Article  PubMed  CAS  Google Scholar 

  101. Riely BK, He H, Venkateshwaran M et al (2011) Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J 65(2):230–243

    Article  PubMed  CAS  Google Scholar 

  102. Naoumkina M, Dixon R (2011) Characterization of the mannan synthase promoter from guar (Cyamopsis tetragonoloba). Plant Cell Rep 30(6):997–1006

    Article  PubMed  CAS  Google Scholar 

  103. Laurie ÌR, Diwadkar P, Jaudal M et al (2011) The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of Flowering time. Plant Physiol 156:2207–2224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kiirika LM, Bergmann HF, Schikowsky C et al (2012) Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root Colonizations but negatively affects Rhizobial infection. Plant Physiol 159(1):501–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. de Zélicourt A, Diet A, Marion J et al (2012) Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant J 70(2):220–230

    Article  CAS  PubMed  Google Scholar 

  106. O’Malley R, Ecker J (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61(6):928–940

    Article  PubMed  CAS  Google Scholar 

  107. Laffont C, Blanchet S, Lapierre C et al (2010) The compact root architecture1 gene regulates lignification, flavonoid production, and polar auxin transport in Medicago truncatula. Plant Physiol 153(4):1597–1607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Carelli M, Biazzi E, Panara F et al (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23(8):3070–3081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. d’Erfurth I, Cosson V, Eschstruth A et al (2003) Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. Plant J 34(1):95–106

    Article  PubMed  Google Scholar 

  110. Tadege M, Ratet P, Mysore K (2005) Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10(5):229–235

    Article  PubMed  CAS  Google Scholar 

  111. Tadege M, Wen J, He J et al (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54(2):335–347

    Article  CAS  PubMed  Google Scholar 

  112. Cheng X, Wen J, Tadege M et al (2011) Reverse genetics in Medicago truncatula using Tnt1 insertion mutants. Methods Mol Biol 678:179–190

    Article  CAS  PubMed  Google Scholar 

  113. Cheng X, Wang M, Lee H-K et al (2014) An efficient reverse genetics platform in the model legume Medicago truncatula. New Phytol 201:1065–1076

    Article  PubMed  CAS  Google Scholar 

  114. Calderini O, Carelli M, Panara F et al (2011) Collection of mutants for functional genomics in the legume Medicago truncatula. Plant Genet Resour 9(2):174–176

    Article  CAS  Google Scholar 

  115. Rakocevic A, Mondy S, Tirichine L et al (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151(3):1250–1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Porceddu A, Panara F, Calderini O et al (2008) An Italian functional genomic resource for Medicago truncatula. BMC Res Notes 1:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wang H, Chen J, Wen J et al (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146(4):1759–1772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Peel GJ, Pang Y, Modolo LV (2009) The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago. Plant J 59(1):136–149

    Article  PubMed  CAS  Google Scholar 

  119. Zhao Q, Gallego-Giraldo L, Wang H et al (2010) An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J 63(1):100–114

    CAS  PubMed  Google Scholar 

  120. Vassileva V, Zehirov G, Ugrinova M (2010) Variable leaf epidermal leaf morphology in Tnt1 insertional mutants of the model legume Medicago truncatula. Biotechnol Biotechnol Equip 24(4):2060–2065

    Article  CAS  Google Scholar 

  121. Wang D, Griffitts J, Starker C et al (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327(5969):1126–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhou C, Han L, Pislariu C et al (2011) From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol 157(3):1483–1496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Tadege M, Mysore K (2011) Tnt1 retrotransposon tagging of STF in Medicago truncatula reveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis. Mob Genet Elements 1(4):301–303

    Article  PubMed  PubMed Central  Google Scholar 

  124. Uppalapati SR, Ishiga Y, Doraiswamy V et al (2012) Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell 24(1):353–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Verdier J, Zhao J, Torres-Jerez I et al (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109(5):1766–1771

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ratet P (2006) Medicago truncatula handbook. Noble Foundation

    Google Scholar 

  127. Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42

    Article  CAS  Google Scholar 

  128. Michno J-M, Wang X, Liu J et al (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  129. Howieson JG (2008) Nitrogen-fixing leguminous symbioses. Springer

    Google Scholar 

  130. Dixon RA (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154(2):453–457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Cañas LA, Fresquet S, Roque E et al (2017) Forage legumes with improved nutritional value: condensed tannins to avoid pasture bloat. In: Clemente A, Jiménez-López JC (eds) Legumes for global food security. NOVA Science Publishers, New York, pp 183–222

    Google Scholar 

  132. Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select TFs. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  133. Fresquet-Corrales S, Roque E, Sarrión-Perdigones A et al (2017) Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS One 12(9):e0184839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ho L, Chen LH, Wang J et al (2009) Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer’s disease-type neuropathology and cognitive deterioration. J Alzheimers Dis 16(1):59–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang J, Ferruzzi MG, Ho L et al (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144–5150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Ollivier J, Töwe S, Bannert A et al (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78(1):3–16

    Article  PubMed  CAS  Google Scholar 

  137. Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  PubMed  CAS  Google Scholar 

  138. Cermak T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Cermak T, Curtin SJ (2017) Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat. Methods Mol Biol 1679:187–212

    Article  PubMed  Google Scholar 

  140. Pandey MK, Roorkiwal M, Singh VK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness (http://www.idi.mineco.gob.es/portal/site/MICINN) grant BIO2016-75485-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Cañas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cañas, L.A., Beltrán, J.P. (2018). Model Legumes: Functional Genomics Tools in Medicago truncatula. In: Cañas, L., Beltrán, J. (eds) Functional Genomics in Medicago truncatula. Methods in Molecular Biology, vol 1822. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8633-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8633-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8632-3

  • Online ISBN: 978-1-4939-8633-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics