Skip to main content

Editing the Medicago truncatula Genome: Targeted Mutagenesis Using the CRISPR-Cas9 Reagent

  • Protocol
  • First Online:
Book cover Functional Genomics in Medicago truncatula

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1822))

Abstract

Medicago truncatula is an annual plant used for studying legume biology, in particular symbioses with nitrogen-fixing rhizobia and arbuscular mycorrhizal fungi. Efforts to decipher the genetic basis of these ecologically and economically important traits are a major goal of plant and crop biology. M. truncatula is an excellent model system for this purpose, as it has several publicly available sequenced genomes, has a rapid seed-to-seed generation time, and is highly transformable. Various mutagenesis platforms such as Tnt1 retrotransposons and RNAi knockdown have been used successfully in forward and reverse genetic studies to identify and functionally characterize candidate genes. The CRISPR/Cas9 reagent is the most recent mutagenesis platform and is highly effective at generating site-directed double-stranded breaks (DSB) in M. truncatula. This protocol will demonstrate the construction of reagents using two genome engineering platforms that have successfully generated mutant plants in M. truncatula, M. sativa, and soybean systems. The reagents are easy to assemble, can be quickly retrofitted to test novel regulatory sequences for improved efficiency, and can be used for more advanced genome engineering strategies such as gene insertion or gene replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350. https://doi.org/10.1146/annurev-arplant-042811-105552

    Article  CAS  Google Scholar 

  2. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  PubMed  CAS  Google Scholar 

  3. Cong L, Ran F, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1038/nbt1319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782. https://doi.org/10.1534/genetics.111.131433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Christian M, Cermak T, Doyle EL et al (2010) TAL effector nucleases create targeted DNA double-strand breaks. Genetics 186:757–761. https://doi.org/10.1534/genetics.110.120717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650

    Article  PubMed  CAS  Google Scholar 

  7. Cermak T, Curtin SJ, Gil-Humanes J et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li J-F, Aach J, Norville JE et al (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31:688–691. https://doi.org/10.1038/nbt.2654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655

    Article  PubMed  CAS  Google Scholar 

  10. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. https://doi.org/10.1016/j.jgg.2013.12.001

    Article  PubMed  CAS  Google Scholar 

  11. Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141. https://doi.org/10.1101/gr.162339.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hwang WY, Fu Y, Reyon D et al (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. https://doi.org/10.1038/nbt.2501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim H, Kim SS, Ryu J et al (2016) A simple , flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58:705–712. https://doi.org/10.1111/jipb.12474

    Article  PubMed  CAS  Google Scholar 

  14. Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472. https://doi.org/10.1038/cr.2013.45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188. https://doi.org/10.1093/nar/gkt780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for the CRISPR-Cas9 mediated genome editing in model plants and major crops. Mol Plant 7:923–926. https://doi.org/10.1093/mp/ssu009

    Article  PubMed  CAS  Google Scholar 

  17. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236. https://doi.org/10.1038/cr.2013.123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Curtin SJ, Tiffin P, Guhlin J et al (2017) Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiol 173:921–931. https://doi.org/10.1104/pp.16.01923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cermak T, Curtin SJ (2017) Design and assembly of CRISPR/Cas9 reagents for gene knockout, targeted insertion, and replacement in wheat. Methods Mol Biol 1679:187–212. https://doi.org/10.1007/978-1-4939-7337-8_12

    Article  PubMed  Google Scholar 

  20. Curtin SJ, Xiong Y, Michno J-M et al (2017) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J. https://doi.org/10.1111/pbi.12857

  21. Lei Y, Lu L, Liu H-Y et al (2017) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to members of the Dan Voytas laboratory, especially Nicholas Baltes, Paul Atkins, and Tomas Čermák, for the development and optimization of these reagents. Thanks to Robert Stupar for the critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun J. Curtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Curtin, S.J. (2018). Editing the Medicago truncatula Genome: Targeted Mutagenesis Using the CRISPR-Cas9 Reagent. In: Cañas, L., Beltrán, J. (eds) Functional Genomics in Medicago truncatula. Methods in Molecular Biology, vol 1822. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8633-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8633-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8632-3

  • Online ISBN: 978-1-4939-8633-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics