Skip to main content

Bioguided Design of Trypanosomicidal Compounds: A Successful Strategy in Drug Discovery

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Drug development is a long and expensive process that takes about 15 years and is mostly carried out by the pharmaceutical industry. In the case of the diseases produced by trypanosomatids, this development is poorly performed by the pharmaceutical industry. As a result the academia is the one that take a leading role with the drug development process. More effective and economic methodologies to obtain safe compounds and with strong trypanosomicidal activity are urgently needed. In this work, a series of methods are described to obtain bioactive molecules with antiparasitic activity and good pharmacological profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavalli A, Bolognesi ML (2009) Neglected tropical diseases: multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J Med Chem 52:7339–7359. https://doi.org/10.1021/jm9004835

    Article  CAS  PubMed  Google Scholar 

  2. Renslo AR, McKerrow JH (2006) Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2:701–710. https://doi.org/10.1038/nchembio837

    Article  CAS  PubMed  Google Scholar 

  3. Papadopoulou MV, Bloomer WD, Rosenzweig HS et al (2016) Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur J Med Chem 123:895–904. https://doi.org/10.1016/j.ejmech.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barrett MP, Mottram JC, Coombs GH (1999) Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends Microbiol 7:82–88

    Article  CAS  PubMed  Google Scholar 

  5. Bettiol E, Samanovic M, Murkin AS et al (2009) Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis 3:e384. https://doi.org/10.1371/journal.pntd.0000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McKim JM (2010) Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 13:188–206. https://doi.org/10.2174/138620710790596736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alvarez G, Aguirre-López B, Varela J et al (2010) Massive screening yields novel and selective Trypanosoma cruzi triosephosphate isomerase dimer-interface-irreversible inhibitors with anti-trypanosomal activity. Eur J Med Chem 45:5767–5772. https://doi.org/10.1016/j.ejmech.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  8. Olivares-Illana V, Pérez-Montfort R, López-Calahorra F et al (2006) Structural differences in triosephosphate isomerase from different species and discovery of a multitrypanosomatid inhibitor. Biochemistry 45:2556–2560. https://doi.org/10.1021/bi0522293

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira ME, Rojas de Arias A, Yaluff G et al (2010) Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine 17:375–378. https://doi.org/10.1016/j.phymed.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  10. Aguilera E, Varela J, Birriel E et al (2016) Potent and selective inhibitors of trypanosoma cruzi triosephosphate isomerase with concomitant inhibition of cruzipain: inhibition of parasite growth through multitarget activity. ChemMedChem 11:1328–1338. https://doi.org/10.1002/cmdc.201500385

    Article  CAS  PubMed  Google Scholar 

  11. Álvarez G, Varela J, Márquez P et al (2014) Optimization of antitrypanosomatid agents: identification of nonmutagenic drug candidates with in vivo activity. J Med Chem 57:3984–3999. https://doi.org/10.1021/jm500018m

    Article  CAS  PubMed  Google Scholar 

  12. Liao TT, Jia RW, Shi YL et al (2011) Propidium iodide staining method for testing the cytotoxicity of 2,4,6-trichlorophenol and perfluorooctane sulfonate at low concentrations with Vero cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1769–1775. https://doi.org/10.1080/10934529.2011.624016

    Article  CAS  PubMed  Google Scholar 

  13. Álvarez G, Perdomo C, Coronel C et al (2017) Multi-anti-parasitic activity of arylidene ketones and thiazolidene hydrazines against Trypanosoma cruzi and Leishmania spp. Molecules 22(5):pii: E709. https://doi.org/10.3390/molecules22050709

    Article  CAS  Google Scholar 

  14. Gerpe A, Alvarez G, Benítez D et al (2009) 5-Nitrofuranes and 5-nitrothiophenes with anti-Trypanosoma cruzi activity and ability to accumulate squalene. Bioorg Med Chem 17:7500–7509. https://doi.org/10.1016/j.bmc.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  15. Ferraro F, Merlino A, dell’Oca N et al (2016) Identification of chalcones as fasciola hepatica cathepsin L inhibitors using a comprehensive experimental and computational approach. PLoS Negl Trop Dis 10:e0004834. https://doi.org/10.1371/journal.pntd.0004834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Álvarez G, Varela J, Cruces E et al (2015) Identification of a new amide-containing thiazole as a drug candidate for treatment of chagas’ disease. Antimicrob Agents Chemother 59(3):1398–1404. https://doi.org/10.1128/AAC.03814-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. OECD (2001) OECD Guidelines for the Testing of Chemicals, Section 4, Test No. 425: Acute Oral Toxicity—Up-and-Down Procedure. Guidel Test Chem 26. https://doi.org/10.1787/9789264071049-en

  18. Schmid W (1975) The micronucleus test. Mutat Res Mutagen Relat Subj 31:9–15. https://doi.org/10.1016/0165-1161(75)90058-8

    Article  CAS  Google Scholar 

  19. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  PubMed  Google Scholar 

  20. Cabrera M, Lavaggi ML, Hernández P et al (2009) Cytotoxic, mutagenic and genotoxic effects of new anti-T. cruzi 5-phenylethenylbenzofuroxans. Contribution of phase I metabolites on the mutagenicity induction. Toxicol Lett 190:140–149. https://doi.org/10.1016/j.toxlet.2009.07.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CSIC I+D 2016 grant #435.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Álvarez Touron, G.I. (2018). Bioguided Design of Trypanosomicidal Compounds: A Successful Strategy in Drug Discovery. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics