Skip to main content

Enalos+ KNIME Nodes: New Cheminformatics Tools for Drug Discovery

  • Protocol
  • First Online:
Rational Drug Design

Abstract

In this chapter we present and discuss Enalos+ nodes designed and developed by NovaMechanics Ltd. for the open-source KNIME platform, as a useful aid when dealing with cheminformatics and nanoinformatics problems or medicinal applications. Enalos+ nodes facilitate tasks performed in molecular modeling and allow access, data mining, and manipulation for multiple chemical databases through the KNIME interface. Enalos+ nodes automate common procedures that greatly facilitate the rapid workflow prototyping within KNIME. Μethods and techniques that are included in Enalos+ nodes are presented in order to offer a deeper understanding of the theoretical background of the incorporated functionalities. An emphasis is given to demonstrate the usefulness of Enalos+ nodes in different cheminformatics applications by presenting four indicative case studies. Specifically, we present case studies that underline the value and the effectiveness of the nodes for molecular descriptors calculation and QSAR predictive model development. In addition, case studies are also presented demonstrating the benefits of the use of Enalos+ nodes for database exploitation within a drug discovery project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Todeschini R, Consonni V (eds) (2010) Molecular descriptors for chemoinformatics, vol 2. Wiley, Weinheim, pp 1–252

    Google Scholar 

  2. Leonis G et al (2016) Open source chemoinformatics software including KNIME analytics. In: Leszczynski J (ed) Handbook of computational chemistry. Springer, New York, pp 1–48

    Google Scholar 

  3. Willett P (2002) Chemistry plans a structural overhaul the rising tide of data being generated by high-throughput. Nature 419:4–7. https://doi.org/10.1038/nj6903-04a

    Article  CAS  Google Scholar 

  4. Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Revised Ed. Springer, New York; 260 p

    Book  Google Scholar 

  5. Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344. https://doi.org/10.1021/ci800038f

    Article  CAS  PubMed  Google Scholar 

  6. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29(6–7):476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  PubMed  Google Scholar 

  7. Melagraki G, Afantitis A (2016) Editorial: towards open access for cheminformatics. Comb Chem High Throughput Screen 19(4):260–261. https://doi.org/10.2174/138620731904160413183904

    Article  CAS  PubMed  Google Scholar 

  8. http://enalosplus.novamechanics.com/

  9. Fillbrunn A, Dietz C, Pfeuffer J et al (2017) KNIME for reproducible cross-domain analysis of life science data. J Biotechnol 261:149–156. https://doi.org/10.1016/j.jbiotec.2017.07.028

    Article  CAS  PubMed  Google Scholar 

  10. Melagraki G, Afantitis A (2013) Enalos KNIME nodes: exploring corrosion inhibition of steel in acidic medium. Chemom Intell Lab Syst 123:9–14. https://doi.org/10.1016/j.chemolab.2013.02.003

    Article  CAS  Google Scholar 

  11. Melagraki G, Afantitis A (2015) A risk assessment tool for the virtual screening of metal oxide nanoparticles through enalos insiliconano platform. Curr Top Med Chem 15(18):1827–1836. https://doi.org/10.2174/1568026615666150506144536

    Article  CAS  PubMed  Google Scholar 

  12. Ojha PK, Roy K (2016) Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  13. Melagraki G, Ntougkos E, Rinotas V et al (2017) Cheminformatics-aided discovery of small-molecule protein-protein interaction (PPI) dual inhibitors of tumor necrosis factor (TNF) and receptor activator of NF-κB ligand (RANKL). PLoS Comput Biol 13(4):e1005372. https://doi.org/10.1371/journal.pcbi.1005372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta 468(1):91–103. https://doi.org/10.1016/S0003-2670(02)00651-7

    Article  CAS  Google Scholar 

  15. Hudson BD, Hyde RM, Rahr E et al (1996) Parameter based methods for compound selection from chemical databases. Quant Struct Relationships 15(4):285–289. https://doi.org/10.1002/qsar.19960150402

    Article  CAS  Google Scholar 

  16. Melagraki G, Afantitis A, Makridima K et al (2006) Prediction of toxicity using a novel RBF neural network training methodology. J Mol Model 12(3):297–305. https://doi.org/10.1007/s00894-005-0032-8

    Article  CAS  PubMed  Google Scholar 

  17. Kennard RW, Stone LA (1969) Computer aided design of experiments. Am Soc Qual 3(2):167–190. https://doi.org/10.2307/1266770

    Article  Google Scholar 

  18. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77. https://doi.org/10.1002/qsar.200390007

    Article  CAS  Google Scholar 

  19. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  20. Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5(4):231–243. https://doi.org/10.1023/A:1021372108686

    Article  CAS  Google Scholar 

  21. Afantitis A, Melagraki G, Sarimveis H et al (2009) A novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44(2):877–884. https://doi.org/10.1016/j.ejmech.2008.05.028

    Article  CAS  PubMed  Google Scholar 

  22. Melagraki G, Afantitis A (2014) Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv 4(92):50713–50725. https://doi.org/10.1039/C4RA07756C

    Article  CAS  Google Scholar 

  23. Schrey AK, Nickel-Seeber J, Drwal MN et al (2017) Computational prediction of immune cell cytotoxicity. Food Chem Toxicol 107:150–166. https://doi.org/10.1016/j.fct.2017.05.041

    Article  CAS  PubMed  Google Scholar 

  24. Chen B, Wild DJ (2010) PubChem BioAssays as a data source for predictive models. J Mol Graph Model 28(5):420–426. https://doi.org/10.1016/j.jmgm.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  26. Cheng T, Pan Y, Hao M et al (2014) PubChem applications in drug discovery: a bibliometric analysis. Drug Discov Today 19(11):1751–1756. https://doi.org/10.1016/j.drudis.2014.08.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georgia Melagraki or Antreas Afantitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Varsou, DD., Nikolakopoulos, S., Tsoumanis, A., Melagraki, G., Afantitis, A. (2018). Enalos+ KNIME Nodes: New Cheminformatics Tools for Drug Discovery. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics