Skip to main content

Binding Moiety Mapping by Saturation Transfer Difference NMR

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Saturation transfer difference (STD) NMR has emerged as one of the key technologies in lead optimization during drug design. Unlike most biophysical assays which report only on the binding affinity, STD NMR reports simultaneously on both the binding affinity and the structure of the binding ligand/protein complex. The STD experiment drives magnetization from a protein to a bound small molecule ligand which carries away the memory of the saturation signal when it dissociates. Since the transfer of saturation is distance dependent, STD NMR can be used to map the specific atoms on the ligand in contact with a protein receptor allowing the impact of any structural change in the binding site to be mapped directly on to the individual functional groups responsible when a suitable compound library is screened. Because the signal is detected from the free ligand and not the bound complex, it can be used on a much wider range of systems than protein-detected NMR and has the advantage of more directly reporting on distances than changes in chemical shifts alone. The STD experiment, while deceptively simple, is very sensitive to both sample conditions and acquisition parameters. We present a general protocol for setting up and STD NMR experiment with a particular focus on how choices in sample conditions and acquisition parameters affect the outcome of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Eng 42(8):864–890. https://doi.org/10.1002/anie.200390233

    Article  CAS  Google Scholar 

  2. Groftehauge MK, Hajizadeh NR, Swann MJ, Pohl E (2015) Protein-ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI). Acta Crystallogr D Biol Crystallogr 71(Pt 1):36–44. https://doi.org/10.1107/S1399004714016617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jerabek-Willemsen M, André T et al (2014) MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct 1077(Supplement C):101–113. https://doi.org/10.1016/j.molstruc.2014.03.009

    Article  CAS  Google Scholar 

  4. Carpenter JW, Laethem C, Hubbard FR et al (2002) Configuring radioligand receptor binding assays for HTS using scintillation proximity assay technology. Methods Mol Biol 190:31–49. https://doi.org/10.1385/1-59259-180-9:031

    Article  CAS  PubMed  Google Scholar 

  5. Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838(1 Pt A):43–55. https://doi.org/10.1016/j.bbamem.2013.04.028

    Article  CAS  PubMed  Google Scholar 

  6. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  PubMed  Google Scholar 

  7. Stockman BJ, Dalvit C (2002) NMR screening techniques in drug discovery and drug design. Prog Nucl Magn Reson Spectrosc 41(3–4):187–231. https://doi.org/10.1016/S0079-6565(02)00049-3

    Article  CAS  Google Scholar 

  8. Pellecchia M, Bertini I, Cowburn D et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7(9):738–745. https://doi.org/10.1038/nrd2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jameson CJ (1996) Understanding NMR chemical shifts. Annu Rev Phys Chem 47:135–169. https://doi.org/10.1146/annurev.physchem.47.1.135

    Article  CAS  Google Scholar 

  10. de Dios AC, Jameson CJ (2012) Recent advances in nuclear shielding calculations. Annu Rep Nmr Spectro 77:1–80. https://doi.org/10.1016/B978-0-12-397020-6.00001-5

    Article  Google Scholar 

  11. Anglister J, Srivastava G, Naider F (2016) Detection of intermolecular NOE interactions in large protein complexes. Prog Nucl Magn Reson Spectrosc 97:40–56. https://doi.org/10.1016/j.pnmrs.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  12. Post CB (2003) Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr Opin Struct Biol 13(5):581–588. https://doi.org/10.1016/j.sbi.2003.09.012

    Article  CAS  PubMed  Google Scholar 

  13. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38(12):1784–1788. https://doi.org/10.1002/(Sici)1521-3773(19990614)38:12<1784::Aid-Anie1784>3.0.Co;2-Q

    Article  CAS  Google Scholar 

  14. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117. https://doi.org/10.1021/ja0100120

    Article  CAS  PubMed  Google Scholar 

  15. Bhunia A, Bhattacharjya S, Chatterjee S (2012) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17(9–10):505–513. https://doi.org/10.1016/j.drudis.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  16. Haselhorst T, Lamerz AC, Itzstein M (2009) Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol 534:375–386. https://doi.org/10.1007/978-1-59745-022-5_26

    Article  CAS  PubMed  Google Scholar 

  17. Wagstaff JL, Taylor SL, Howard MJ (2013) Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol BioSyst 9(4):571–577. https://doi.org/10.1039/c2mb25395j

    Article  CAS  PubMed  Google Scholar 

  18. Venkitakrishnan RP, Benard O, Max M et al (2012) Use of NMR saturation transfer difference spectroscopy to study ligand binding to membrane proteins. Methods Mol Biol 914:47–63. https://doi.org/10.1007/978-1-62703-023-6_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benie AJ, Moser R, Bauml E et al (2003) Virus-ligand interactions: identification and characterization of ligand binding by NMR spectroscopy. J Am Chem Soc 125(1):14–15. https://doi.org/10.1021/ja027691e

    Article  CAS  PubMed  Google Scholar 

  20. Harris KA, Shekhtman A, Agris PF (2013) Specific RNA-protein interactions detected with saturation transfer difference NMR. RNA Biol 10(8):1307–1311. https://doi.org/10.4161/rna.25948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Micco S, Bassarello C, Bifulco G et al (2006) Differential-frequency saturation transfer difference NMR spectroscopy allows the detection of different ligand-DNA binding modes. Angew Chem Int Ed 45(2):224–228. https://doi.org/10.1002/anie.200501344

    Article  CAS  Google Scholar 

  22. Hens Z, Martins JC (2013) A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem Mater 25(8):1211–1221. https://doi.org/10.1021/cm303361s

    Article  CAS  Google Scholar 

  23. Claasen B, Axmann M, Meinecke R, Meyer B (2005) Direct observation of ligand binding to membrane proteins in living cells by a saturation transfer double difference (STDD) NMR spectroscopy method shows a significantly higher affinity of integrin alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem Soc 127(3):916–919. https://doi.org/10.1021/ja044434w

    Article  CAS  PubMed  Google Scholar 

  24. Dias DM, Ciulli A (2014) NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol 116(2–3):101–112. https://doi.org/10.1016/j.pbiomolbio.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma R, Wang P, Wu J, Ruan K (2016) Process of fragment-based lead discovery-a perspective from NMR. Molecules 21(7). https://doi.org/10.3390/molecules21070854

    Article  CAS  PubMed Central  Google Scholar 

  26. Cala O, Krimm I (2015) Ligand-orientation based fragment selection in STD NMR screening. J Med Chem 58(21):8739–8742. https://doi.org/10.1021/acs.jmedchem.5b01114

    Article  CAS  PubMed  Google Scholar 

  27. Kim HY, Wyss DF (2015) NMR screening in fragment-based drug design: a practical guide. Methods Mol Biol 1263:197–208. https://doi.org/10.1007/978-1-4939-2269-7_16

    Article  CAS  PubMed  Google Scholar 

  28. Vanwetswinkel S, Heetebrij RJ, van Duynhoven J et al (2005) TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol 12(2):207–216. https://doi.org/10.1016/j.chembiol.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  29. Jayalakshmi V, Krishna NR (2005) Determination of the conformation of trimethoprim in the binding pocket of bovine dihydrofolate reductase from a STD-NMR intensity-restrained CORCEMA-ST optimization. J Am Chem Soc 127(40):14080–14084. https://doi.org/10.1021/ja054192f

    Article  CAS  PubMed  Google Scholar 

  30. Jayalakshmi V, Biet T, Peters T, Krishna NR (2004) Refinement of the conformation of UDP-galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization. J Am Chem Soc 126(28):8610–8611. https://doi.org/10.1021/ja048703u

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Li R, Shin R, Wang Y et al (2013) Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMA-ST calculations. ChemMedChem 8(10):1629–1633. https://doi.org/10.1002/cmdc.201300267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayalakshmi V, Krishna NR (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson 155(1):106–118. https://doi.org/10.1006/jmre.2001.2499

    Article  CAS  PubMed  Google Scholar 

  33. Quiros MT, Macdonald C, Angulo J, Munoz MP (2016) Spin saturation transfer difference NMR (SSTD NMR): a new tool to obtain kinetic parameters of chemical exchange processes. J Vis Exp 117. https://doi.org/10.3791/54499

  34. Viegas A, Manso J, Nobrega FL, Cabrita EJ (2011) Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J Chem Educ 88(7):990–994. https://doi.org/10.1021/ed101169t

    Article  CAS  Google Scholar 

  35. Kemper S, Patel MK, Errey JC et al (2010) Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments. J Magn Reson 203(1):1–10. https://doi.org/10.1016/j.jmr.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  36. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45(8):1712–1722

    Article  CAS  PubMed  Google Scholar 

  37. Coan KE, Shoichet BK (2008) Stoichiometry and physical chemistry of promiscuous aggregate-based inhibitors. J Am Chem Soc 130(29):9606–9612. https://doi.org/10.1021/ja802977h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aldrich C, Bertozzi C, Georg G et al (2017) The ecstasy and agony of assay interference compounds. J Med Chem 60(6):2165–2168. https://doi.org/10.1021/acs.jmedchem.7b00229

    Article  CAS  PubMed  Google Scholar 

  39. Feng BY, Shelat A, Doman TN et al (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1(3):146–148. https://doi.org/10.1038/nchembio718

    Article  CAS  PubMed  Google Scholar 

  40. Feng BY, Simeonov A, Jadhav A et al (2007) A high-throughput screen for aggregation-based inhibition in a large compound library. J Med Chem 50(10):2385–2390. https://doi.org/10.1021/jm061317y

    Article  CAS  PubMed  Google Scholar 

  41. Harwood JS, Mo H (2016) Practical NMR spectroscopy laboratory guide using Bruker spectrometers. Academic Press, London

    Google Scholar 

  42. Berger S, Braun S (2004) 200 and more NMR experiments: a practical course. 3rd rev. and expanded edn. Wiley, Leipzig

    Google Scholar 

  43. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112(2):275–279. https://doi.org/10.1006/jmra.1995.1047

    Article  CAS  Google Scholar 

  44. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665

    Article  CAS  PubMed  Google Scholar 

  45. Ley NB, Rowe ML, Williamson RA, Howard MJ (2014) Optimising selective excitation pulses to maximise saturation transfer difference NMR spectroscopy. RSC Adv 4(14):7347–7351. https://doi.org/10.1039/C3RA46246C

    Article  CAS  PubMed  Google Scholar 

  46. Mitra P, Shultis D, Brender JR et al (2013) An evolution-based approach to De novo protein design and case study on mycobacterium tuberculosis. PLoS Comput Biol 9(10):e1003298. https://doi.org/10.1371/journal.pcbi.1003298

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bauer C, Freeman R, Frenkiel T et al (1984) Gaussian pulses. J Magn Reson 58(3):442–457. https://doi.org/10.1016/0022-2364(84)90148-3

    Article  CAS  Google Scholar 

  48. Cutting B, Shelke SV, Dragic Z et al (2007) Sensitivity enhancement in saturation transfer difference (STD) experiments through optimized excitation schemes. Magn Reson Chem 45(9):720–724. https://doi.org/10.1002/mrc.2033

    Article  CAS  PubMed  Google Scholar 

  49. Claridge TDW, ScienceDirect (Online service) (2009) High-resolution NMR techniques in organic chemistry. Elsevier, Amsterdam

    Google Scholar 

  50. Yan J, Kline AD, Mo H et al (2003) The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J Magn Reson 163(2):270–276

    Article  CAS  PubMed  Google Scholar 

  51. Kelly AE, Ou HD, Withers R, Dotsch V (2002) Low-conductivity buffers for high-sensitivity NMR measurements. J Am Chem Soc 124(40):12013–12019

    Article  CAS  PubMed  Google Scholar 

  52. Voehler MW, Collier G, Young JK et al (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183(1):102–109. https://doi.org/10.1016/j.jmr.2006.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104(8):3641–3676. https://doi.org/10.1021/cr030409h

    Article  CAS  PubMed  Google Scholar 

  54. Dalvit C, Flocco M, Knapp S et al (2002) High-throughput NMR-based screening with competition binding experiments. J Am Chem Soc 124(26):7702–7709

    Article  CAS  PubMed  Google Scholar 

  55. Jahnke W, Floersheim P, Ostermeier C et al (2002) NMR reporter screening for the detection of high-affinity ligands. Angew Chem Int Ed Eng 41(18):3420–3423. https://doi.org/10.1002/1521-3773(20020916)41:18<3420::AID-ANIE3420>3.0.CO;2-E

    Article  CAS  Google Scholar 

  56. Siriwardena AH, Tian F, Noble S, Prestegard JH (2002) A straightforward NMR-spectroscopy-based method for rapid library screening. Angew Chem Int Ed Eng 41(18):3454–3457. https://doi.org/10.1002/1521-3773(20020916)41:18<3454::AID-ANIE3454>3.0.CO;2-L

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Brender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brender, J.R., Krishnamoorthy, J., Ghosh, A., Bhunia, A. (2018). Binding Moiety Mapping by Saturation Transfer Difference NMR. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics