Angiotensin II Type 1 Receptor Homology Models: A Comparison Between In Silico and the Crystal Structures

  • Tahsin F. Kellici
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


For many years structural studies of the angiotensin II type 1 receptor (AT1R) solely relied on mutagenesis experiments combined with homology modeling. The recent publication of the co-crystallized structures of AT1R with the antagonists ZD7155 and olmesartan allows comparative studies. In this chapter the binding modes of olmesartan in the crystal structures and the homology models are compared utilizing mutagenesis data. The obtained results suggest that both homology and crystal structures should be used for future rational drug design. Of paramount importance are these co-crystallized structures or homology models to be simulated in a lipid bilayer environment that mimics the biological.

Key words

Angiotensin II type 1 receptor Homology modeling Induced fit docking Quantum-polarized ligand docking Molecular dynamics 



T.K. is extremely grateful to Prof. Thomas Mavromoustakos for his supporting and funding.


  1. 1.
    Zhang H, Unal H, Gati C et al (2015) Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161(4):833–844. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang H, Unal H, Desnoyer R et al (2015) Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 290(49):29127–29139. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rataj K, Witek J, Mordalski S et al (2014) Impact of template choice on homology model efficiency in virtual screening. J Chem Inf Model 54(6):1661–1668. CrossRefPubMedGoogle Scholar
  4. 4.
    Xiang J, Chun E, Liu C et al (2016) Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol Sci 37(12):1055–1069. CrossRefPubMedGoogle Scholar
  5. 5.
    Kellici TF, Ntountaniotis D, Kritsi E et al (2016) Leveraging NMR and X-ray data of the free ligands to build better drugs targeting angiotensin II type 1 G-protein coupled receptor. Curr Med Chem 23(1):36–59. CrossRefGoogle Scholar
  6. 6.
    Kellici TF, Tzakos AG, Mavromoustakos T (2015) Rational drug design and synthesis of molecules targeting the angiotensin II type 1 and type 2 receptors. Molecules 20(3):3868–3897. CrossRefPubMedGoogle Scholar
  7. 7.
    Miura SI, Fujino M, Hanzawa H et al (2006) Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem 281(28):19288–19295. CrossRefPubMedGoogle Scholar
  8. 8.
    Miura S, Nakao N, Hanzawa H et al (2013) Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers. PLoS One 8(11):e79914. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miura S, Kiya Y, Hanzawa H et al (2012) Small molecules with similar structures exhibit agonist, neutral antagonist or inverse agonist activity toward angiotensin II type 1 receptor. PLoS One 7(6):e37974. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kellici TF, Ntountaniotis D, Liapakis G et al (2016) The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arab J Chem.
  11. 11.
    Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. CrossRefGoogle Scholar
  12. 12.
    Small-Molecule Drug Discovery Suite 2015–2 (2015) Schrödinger Suite 2015-2 QM-Polarized Ligand Docking protocol; Glide version 6.7, Schrödinger, LLC, New York, NY, 2015; Jaguar version 8.8, Schrödinger, LLC, New York, NY, 2015; QSite version 6.7, Schrödinger, LLC, New York, NYGoogle Scholar
  13. 13.
    Small-Molecule Drug Discovery Suite 2015–2 (2015) Schrödinger Suite 2015-2 Induced Fit Docking protocol; Glide version 6.7, Schrödinger, LLC, New York, NY, 2015; Prime version 4.0, Schrödinger, LLC, New York, NYGoogle Scholar
  14. 14.
    Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367. CrossRefGoogle Scholar
  15. 15.
    Schrödinger Release 2015–2 (2015) Desmond Molecular Dynamics System, version 4.2, D. E. Shaw Research, New York, NY, 2015. Maestro-Desmond Interoperability Tools, version 4.2, Schrödinger, New York, NYGoogle Scholar
  16. 16.
    Yanagisawa H, Amemiya Y, Kanazaki T et al (1996) Nonpeptide angiotensin II receptor antagonists: synthesis, biological activities, and structure - activity relationships of imidazole-5-carboxylic acids bearing alkyl, alkenyl, and hydroxyalkyl substituents at the 4-position and their related compounds. J Med Chem 39(1):323–338CrossRefPubMedGoogle Scholar
  17. 17.
    Tuccinardi T, Calderone V, Rapposelli S et al (2006) Proposal of a new binding orientation for non-peptide AT1 antagonists: homology modeling, docking and three-dimensional quantitative structure-activity relationship analysis. J Med Chem 49(14):4305–4316. CrossRefPubMedGoogle Scholar
  18. 18.
    Matsoukas MT, Cordomi A, Rios S et al (2013) Ligand binding determinants for angiotensin II type 1 receptor from computer simulations. J Chem Inf Model 53(11):2874–2883. CrossRefPubMedGoogle Scholar
  19. 19.
    Matsoukas MT, Potamitis C, Plotas P et al (2013) Insights into AT1 receptor activation through AngII binding studies. J Chem Inf Model 53(11):2798–2811. CrossRefPubMedGoogle Scholar
  20. 20.
    Olsson MHM, Søndergaard CR, Rostkowski M et al (2011) PROPKA3: consistent treatment of internal and surface residues in empirical p K a predictions. J Chem Theory Comput 7(2):525–537. CrossRefGoogle Scholar
  21. 21.
    Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. CrossRefGoogle Scholar
  22. 22.
    Zhu K, Day T, Warshaviak D et al (2014) Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 82(8):1646–1655. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Small-Molecule Drug Discovery Suite 2015–2 (2015) Glide, version 6.7, Schrödinger, LLC, New York, NYGoogle Scholar
  24. 24.
    Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. CrossRefGoogle Scholar
  25. 25.
    Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49(2):534–553. CrossRefGoogle Scholar
  26. 26.
    Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001CrossRefGoogle Scholar
  27. 27.
    Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643CrossRefGoogle Scholar
  28. 28.
    Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189CrossRefGoogle Scholar
  29. 29.
    Netticadan TJ, Ashavaid TF, Nair KG (1997) Characterisation of the canine cardiac sarcolemma in experimental myocardial ischemia. Indian J Clin Biochem 12(1):49–54. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Oliveira TR, Lamy MT, De Paula UM et al (2009) Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes. Braz J Med Biol Res 42(9):844–853CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tahsin F. Kellici
    • 1
  1. 1.Division of Organic Chemistry, Department of ChemistryNational and Kapodistrian University of Athens, Panepistimiopolis ZografouAthensGreece

Personalised recommendations