Development of Peptide-Based Inhibitors of Amylin Aggregation Employing Aromatic and Electrostatic Repulsion

  • Adam A. ProfitEmail author
  • Ruel Z. B. DesameroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


Human islet amyloid polypeptide (hIAPP) is a 37-residue hormone that is co-stored and co-secreted with insulin. In type 2 diabetes, the polypeptide misfolds to form amyloid plaques in the pancreas. The self-assembly of hIAPP has been linked to the loss of insulin production and β-cell death. Recent investigations have revealed that soluble oligomers of hIAPP are the cytotoxic species responsible for β-cell death and not insoluble amyloid fibrils. Compounds that prevent the self-assembly of hIAPP or drive self-assembly to the state of innocuous insoluble amyloid may be of potential therapeutic value. In this report we summarize key methods employed in our efforts to identify peptide-based modulators of amylin self-assembly that utilize π-electronic effects or electrostatic charge repulsion. These peptide-based modulators may serve as lead compounds for the development of more drug-like molecules and demonstrate that tuning π-electron density and employing charged amyloid disrupting elements are viable approaches toward the design of potential amyloid inhibitors.

Key words

Amylin, amyloid, type 2 diabetes Raman Peptide Thioflavin-T assays 



The work presented here was supported in part by the Institute of General Medicine of the National Institutes of Health, grant # 5SC3GM89624 (to RZBD) and 1R15GM119040 (to RZBD and AAP).


  1. 1.
    Fabrizio C, Christopher MD (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75(1):333–366. CrossRefGoogle Scholar
  2. 2.
    Buxbaum JN, Linke RPA (2012) Molecular history of the amyloidoses. J Mol Biol 421(2):142–159. CrossRefPubMedGoogle Scholar
  3. 3.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17CrossRefPubMedGoogle Scholar
  4. 4.
    Cao P, Marek P, Noor H et al (2013) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587:1106–1118CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cao P, Abedini A, Raleigh DP (2013) Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Curr Opin Struct Biol 23(1):82–89CrossRefPubMedGoogle Scholar
  6. 6.
    Raleigh D, Zhang X, Hastoy B, Clark (2017) A the β-cell assassin: IAPP cytotoxicity. J Mol Endocrinol 59(3):R121-R140. doi: CrossRefPubMedGoogle Scholar
  7. 7.
    Jaikaran ETAS, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537(3):179–203. CrossRefPubMedGoogle Scholar
  8. 8.
    Westermark P, Wernstedt C, Wilander E et al (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84(11):3881–3885CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cooper GJS, Willis AC, Clark A et al (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84(23):8628–8632CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Clark A, Cooper GJ, Lewis CE et al (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 330(8553):231–234. CrossRefGoogle Scholar
  11. 11.
    Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826. CrossRefGoogle Scholar
  12. 12.
    Lutz TA (2012) Control of energy homeostasis by amylin. Cell Mol Life Sci 69(12):1947–1965. CrossRefPubMedGoogle Scholar
  13. 13.
    Kapurniotu A (2001) Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Pept Sci 60(6):438–459.<438::aid-bip10182>;2-aCrossRefGoogle Scholar
  14. 14.
    Potter KJ, Abedini A, Marek P et al (2010) Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts. Proc Natl Acad Sci U S A 107(9):4305–4310. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Engel MF (2009) Membrane permeabilization by islet amyloid polypeptide. Chem Phys Lipids 160(1):1–10. CrossRefPubMedGoogle Scholar
  16. 16.
    Lin C-Y, Gurlo T, Kayed R et al (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced β-cell apoptosis in h-IAPP transgenic mice. Diabetes 56(5):1324–1332. CrossRefPubMedGoogle Scholar
  17. 17.
    Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Profit AA, Vedad J, Saleh M, Desamero RZB (2015) Aromaticity and amyloid formation: effect of π-electron distribution and aryl substituent geometry on the self-assembly of peptides derived from hIAPP22-29. Arch Biochem Biophys 567:46–58. CrossRefPubMedGoogle Scholar
  19. 19.
    Profit AA, Vedad J, Desamero RZB (2017) Peptide conjugates of benzene carboxylic acids as agonists and antagonists of amylin aggregation. Bioconjug Chem 28(2):666–677. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598. CrossRefPubMedGoogle Scholar
  21. 21.
    Profit AA, Felsen V, Chinwong J et al (2013) Evidence of π-stacking interactions in the self-assembly of hIAPP22-29. Proteins 81(4):690–703. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hunter CA, Sanders JKM (1990) The nature of .Pi.–.Pi. Interactions. J Am Chem Soc 112(14):5525–5534. CrossRefGoogle Scholar
  23. 23.
    Cockroft SL, Hunter CA, Lawson KR et al (2005) Electrostatic control of aromatic stacking interactions. J Am Chem Soc 127(24):8594–8595. CrossRefPubMedGoogle Scholar
  24. 24.
    Gordy W (1946) A relation between bond force constants, bond orders, bond lengths and the electronegativities of the bonded atom. J Chem Phys 14:305–320CrossRefGoogle Scholar
  25. 25.
    Deng H, Zheng J, Clakre A et al (1994) Source of catalysis in the lactate dehydrogenase system. Ground state interactions in the enzyme∙substrate complex. Biochemistry 33(8):2297–2305. CrossRefPubMedGoogle Scholar
  26. 26.
    Getahun Z, Huang C-Y, Wang T et al (2003) Using nitrile-derivatized amino acids as infrared probes of local environment. J Am Chem Soc 125:405–411. CrossRefPubMedGoogle Scholar
  27. 27.
    Weeks CL, Polishchuk A, Getahun Z et al (2008) Investigation of an unnatural amino acid for use as a resonance Raman probe: detection limits and solvent and temperature dependence of the νCN band of 4-cyanophenylalanine. J Raman Spectrosc 39:1606–1613. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schmid ED, Moschallski M, Peticolas WL (1986) Solvent effects on the absorption and raman spectra of aromatic nitro compounds. 1. Calculation of preresonance raman intensities. J Phys Chem 90(11):2340–2346. CrossRefGoogle Scholar
  29. 29.
    Smith EE, Linderman BY, Luskin AC, Brewer SH (2011) Probing local environments with the infrared probe: L-4-nitrophenylalanine. J Phys Chem B 115(10):2380–2385. CrossRefPubMedGoogle Scholar
  30. 30.
    Wiltzius JJW, Sievers SA, Sawaya MR et al (2008) Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 17(9):1467–1474. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lowe TL, Strzelec A, Kiessling LL, Murphy RM (2001) Structure-function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry 40(26):7882–7889. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryYork College and The Institute for Macromolecular AssembliesJamaicaUSA
  2. 2.Ph.D. Programs in Chemistry and BiochemistryThe Graduate Center of the City University of New YorkNew YorkUSA

Personalised recommendations