Skip to main content

Supervised Molecular Dynamics (SuMD) Approaches in Drug Design

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Supervised MD (SuMD) is a computational method that enables the exploration of ligand–receptor recognition pathway in a reduced timescale. The performance speedup is due to the incorporation of a tabu-like supervision algorithm on the ligand–receptor approaching distance into a classic molecular dynamics (MD) simulation. SuMD enables the investigation of ligand–receptor binding events independently from the starting position, chemical structure of the ligand (small molecules or peptides), and also from its receptor-binding affinity. The application of SuMD highlights an appreciable capability of the technique to reproduce the crystallographic structures of several ligand–protein complexes and can provide high-quality protein–ligand models of for which yet experimental confirmation of binding mode is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooke RM, Brown AJH, Marshall FH, Mason JS (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20(11):1355–1364. https://doi.org/10.1016/j.drudis.2015.08.003

    Article  CAS  PubMed  Google Scholar 

  3. Dror RO, Pan AC, Arlow DH et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123. https://doi.org/10.1073/pnas.1104614108

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108(25):10184–10189. https://doi.org/10.1073/pnas.1103547108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferruz N, Harvey MJ, Mestres J, De Fabritiis G (2015) Insights from fragment hit binding assays by molecular simulations. J Chem Inf Model 55(10):2200–2205. https://doi.org/10.1021/acs.jcim.5b00453

    Article  CAS  PubMed  Google Scholar 

  6. Kuhn B, Guba W, Hert J et al (2016) A real-world perspective on molecular design. J Med Chem 59(9):4087–4102. https://doi.org/10.1021/acs.jmedchem.5b01875

    Article  CAS  PubMed  Google Scholar 

  7. Sabbadin D, Moro S (2014) Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J Chem Inf Model 54(2):372–376. https://doi.org/10.1021/ci400766b

    Article  CAS  PubMed  Google Scholar 

  8. Cuzzolin A, Sturlese M, Deganutti G et al (2016) Deciphering the complexity of ligand-protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J Chem Inf Model 56(4):687–705. https://doi.org/10.1021/acs.jcim.5b00702

    Article  CAS  PubMed  Google Scholar 

  9. Jaakola V-P, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217. https://doi.org/10.1126/science.1164772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Congreve M, Andrews SP, Doré AS et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55(5):1898–1903. https://doi.org/10.1021/jm201376w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doré AS, Robertson N, Errey JC et al (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19(9):1283–1293. https://doi.org/10.1016/j.str.2011.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salmaso V, Sturlese M, Cuzzolin A, Moro S (2017) Exploring protein–peptide recognition pathways using a supervised molecular dynamics approach. Structure 25(4):655–662.e2. https://doi.org/10.1016/j.str.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  13. Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 15(8):533–550. https://doi.org/10.1038/nrd.2016.29

    Article  CAS  PubMed  Google Scholar 

  14. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953. https://doi.org/10.1126/science.274.5289.948

    Article  CAS  PubMed  Google Scholar 

  15. Petros AM, Nettesheim DG, Wang Y et al (2000) Rationale for Bcl-xL/bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9(12):2528–2534. https://doi.org/10.1110/ps.9.12.2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baek S, Kutchukian PS, Verdine GL et al (2012) Structure of the stapled p53 peptide bound to Mdm2. J Am Chem Soc 134(1):103–106. https://doi.org/10.1021/ja2090367

    Article  CAS  PubMed  Google Scholar 

  17. Deganutti G, Welihinda A, Moro S (2017) Comparison of the human A2A adenosine receptor recognition by adenosine and Inosine: new insight from supervised molecular dynamics simulations. ChemMedChem 12(16):1319–1326. https://doi.org/10.1002/cmdc.201700200

    Article  CAS  PubMed  Google Scholar 

  18. Cheng RKY, Segala E, Robertson N et al (2017) Structures of human A1 and A2A adenosine receptors with Xanthines reveal determinants of selectivity. Structure 25(8):1275–1285.e4. https://doi.org/10.1016/j.str.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  19. Williams T, Kelley C Gnuplot 4.5: an interactive plotting program, version 4.5; http://gnuplot.info (Accessed October 2015)

  20. Harvey MJ, Giupponi G, Fabritiis GD (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5(6):1632–1639. https://doi.org/10.1021/ct9000685

    Article  CAS  PubMed  Google Scholar 

  21. Case DA, Babin V, Berryman JT et al (2014) AMBER 14

    Google Scholar 

  22. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  23. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. https://doi.org/10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  24. MacKerell AD, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56(4):257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  25. Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168. https://doi.org/10.1021/ci3003649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jakowiecki J, Filipek S (2016) Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor. J Chem Inf Model 56(12):2457–2466. https://doi.org/10.1021/acs.jcim.6b00499

    Article  CAS  PubMed  Google Scholar 

  28. Fronik P, Gaiser BI, Sejer Pedersen D (2017) Bitopic ligands and metastable binding sites: opportunities for G protein-coupled receptor (GPCR) medicinal chemistry. J Med Chem 60(10):4126–4134. https://doi.org/10.1021/acs.jmedchem.6b01601

    Article  CAS  PubMed  Google Scholar 

  29. Sabbadin D, Ciancetta A, Moro S (2014) Perturbation of fluid dynamics properties of water molecules during G protein-coupled receptor-ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 54(10):2846–2855. https://doi.org/10.1021/ci500397y

    Article  CAS  PubMed  Google Scholar 

  30. Paoletta S, Sabbadin D, von Kügelgen I et al (2015) Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J Comput Aided Mol Des 29(8):737–756. https://doi.org/10.1007/s10822-015-9858-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lipkowitz K (1995) Abuses of molecular mechanics: pitfalls to avoid. J Chem Educ 72(12):1070. https://doi.org/10.1021/ed072p1070

    Article  CAS  Google Scholar 

  32. Brameld KA, Kuhn B, Reuter DC, Stahl M (2008) Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J Chem Inf Model 48(1):1–24. https://doi.org/10.1021/ci7002494

    Article  CAS  PubMed  Google Scholar 

  33. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40(3):389–408. https://doi.org/10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  34. Allen FH (2002) The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  CAS  PubMed  Google Scholar 

  35. Stahl M, Baier S (2015) How many molecules does it take to tell a story? Case studies, language, and an epistemic view of medicinal chemistry. ChemMedChem 10(6):949–956. https://doi.org/10.1002/cmdc.201500091

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Moro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sabbadin, D., Salmaso, V., Sturlese, M., Moro, S. (2018). Supervised Molecular Dynamics (SuMD) Approaches in Drug Design. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics