Skip to main content

The Impact of Lipophilicity in Drug Discovery: Rapid Measurements by Means of Reversed-Phase HPLC

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Lipophilicity constitutes a vital physicochemical property in drug design as it is connected with pharmacodynamic and pharmacokinetic properties as well as toxicological aspects of candidate drugs. Traditional partitioning experiments to determine n-octanol-water coefficients are laborious and time-consuming, while they cannot be reliably performed for highly lipophilic or compounds undergoing degradation. Alternatively, lipophilicity of candidate drugs can be accurately and reproducibly determined using reversed-phase liquid chromatography. In this chapter, the details of protocols for lipophilicity assessment using reversed-phase HPLC, under conditions which provide the best simulation of n-octanol-water partition coefficients, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansch C, Leo A (eds) (1995) Exploring QSAR: fundamentals and applications in chemistry and biology. American Chemical Society, Washington, D.C.

    Google Scholar 

  2. Testa B, Crivori P, Reist M, Carrupt P-A (2000) The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov 17:179–211. https://doi.org/10.1023/A:1008741731244

    Article  Google Scholar 

  3. Arnott JA, Planey SL (2012) The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov 7(10):863–875. https://doi.org/10.1517/17460441.2012.714363

    Article  CAS  PubMed  Google Scholar 

  4. Tsopelas F, Giaginis C, Tsantili-Kakoulidou A (2017) Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov 12(9):885–896. https://doi.org/10.1080/17460441.2017.1344210

    Article  CAS  PubMed  Google Scholar 

  5. Meyer H (1899) Zur Theorie der Alkohol-narkose. Arch Exp Pathol Pharmakol 42:109–118. https://doi.org/10.1007/BF01834480

    Article  Google Scholar 

  6. Overton E (1901) Studien uber die narkose zugleich ein beitrag zur allgemeinen pharmakologie. Gustav Fischer, Jena

    Google Scholar 

  7. Hansch C, Fujita T (1964) ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626. https://doi.org/10.1021/ja01062a035

    Article  CAS  Google Scholar 

  8. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616. https://doi.org/10.1021/cr60274a001

    Article  CAS  Google Scholar 

  9. Avdeef A (2003) Absorption and drug development. Solubility, permeability and charge state. Wiley, Hoboken, NJ. https://doi.org/10.1002/047145026X

    Book  Google Scholar 

  10. Tsantili-Kakoulidou A, Piperaki S, Panderi I et al (1997) Prediction of distribution coefficients from structure. The influence of ion pair formation as reflected in experimental and calculated values. QSAR Comb Sci 16(4):315–316. https://doi.org/10.1002/qsar.19970160407

    Article  CAS  Google Scholar 

  11. Pagliara A, Carrupt P-A, Caron G et al (1997) Lipophilicity profiles of Ampholytes. Chem Rev 97(8):3385–3400. https://doi.org/10.1021/cr9601019

    Article  CAS  PubMed  Google Scholar 

  12. Hansch C, Bjorkroth JP, Leo A (1987) Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 76(9):663–687. https://doi.org/10.1002/jps.2600760902

    Article  CAS  PubMed  Google Scholar 

  13. Kubinyi H (1979) Lipophilicity and biological activity. Drug transport and drug distribution in model systems and in biological systems. Arzneimittelforschung 29(8):1067–1080

    CAS  PubMed  Google Scholar 

  14. Dearden JC (1990) Molecular structure and drug transport. In: Ramsden CA, Hansch C, Sammer PG, Taylor JB (eds) Comprehensive medicinal chemistry. The rational design, mechanistic study & therapeutic applications of chemical compounds, vol 4. Pergamon, Oxford, pp 375–411

    Google Scholar 

  15. G C, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight. Eur J Pharm Sci 6(4):317–324. https://doi.org/10.1016/S0928-0987(97)10019-7

    Article  Google Scholar 

  16. Camenisch G, Folkers G, van de Waterbeemd H (1998) Shapes of membrane permeability-lipophilicity curves: extension of theoretical models with an aqueous pore pathway. Eur J Pharm Sci 6(4):321–329. https://doi.org/10.1016/S0928-0987(98)00033-5

    Article  CAS  Google Scholar 

  17. Snyder PW, Mecinović J, Moustakas DT et al (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 108:17889–17894. https://doi.org/10.1073/pnas.1114107108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freire E (2004) Isothermal titration calorimetry: controlling binding forces in lead optimization. Drug Discov Today Technol 1:295–299. https://doi.org/10.1016/j.ddtec.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  19. Smith DA, van de Waterbeemd H (1999) Pharmacokinetics and metabolism in early drug discovery. Curr Opin Chem Biol 4:373–378. https://doi.org/10.1016/S1367-5931(99)80056-8

    Article  Google Scholar 

  20. Rowley M, Kulagowski JJ, Watt AP et al (1997) Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 40:4053–4068. https://doi.org/10.1021/jm970417o

    Article  CAS  PubMed  Google Scholar 

  21. Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A (2015) In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 86:27–45. https://doi.org/10.1016/j.addr.2015.03.011

    Article  CAS  PubMed  Google Scholar 

  22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  Google Scholar 

  23. Veber DF, Johnson SR, Cheng HY et al (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. https://doi.org/10.1021/jm020017n

    Article  CAS  Google Scholar 

  24. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877. https://doi.org/10.1016/S1359-6446(03)02831-9

    Article  PubMed  Google Scholar 

  25. Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834. https://doi.org/10.1021/jm701122q

    Article  CAS  PubMed  Google Scholar 

  26. Vallianatou T, Giaginis C, Tsantili-Kakoulidou A (2015) The impact of physicochemical and molecular properties in drug design: navigation in the “drug-like” chemical space. Adv Exp Med Biol 822:187–194. https://doi.org/10.1007/978-3-319-08927-0_21

    Article  CAS  PubMed  Google Scholar 

  27. Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8(3):203–212. https://doi.org/10.1038/nrd2796

    Article  CAS  PubMed  Google Scholar 

  28. Ferenczy GG, Keseru GM (2015) The impact of binding thermodynamics on medicinal chemistry optimizations. Future Med Chem 7(10):1285–1303. https://doi.org/10.4155/fmc.15.63

    Article  CAS  PubMed  Google Scholar 

  29. Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular Lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J Pharm Sci 98(3):861–893. https://doi.org/10.1002/jps.21494

    Article  CAS  PubMed  Google Scholar 

  30. Testa B, Carrupt PA, Gaillard P, Tsai RS (1996) Intramolecular interactions encoded in lipophilicity: their nature and significance. In: Pliska V, Testa B, van de Waterbeemd H (eds) Lipophilicity in drug action and toxicology. VCH, Weinheim, pp 49–71. https://doi.org/10.1002/9783527614998.ch4

    Chapter  Google Scholar 

  31. Chrysanthakopoulos M, Koletsou A, Nicolaou I et al (2009) Lipophilicity studies on pyrrolyl-acetic acid derivatives. Experimental versus predicted logP values in relationship with aldose reductase inhibitory activity. QSAR Comb Sci 28:551–560. https://doi.org/10.1002/qsar.200860138

    Article  CAS  Google Scholar 

  32. Hersey A, Hill AP, Hyde RM, Livingstone DJ (1989) Principles of method selection in partition studies. Quant Struct Act Relat 8:288–296. https://doi.org/10.1002/qsar.19890080405

    Article  CAS  Google Scholar 

  33. Sangster J (1997) Octanol-water partition coefficients: fundamentals and physical chemistry. John Wiley & Sons, Inc., New York

    Google Scholar 

  34. Avdeef A (1993) pH-metric logP. 2. Refinement of partition coefficients and ionization constants of Multiprotic substances. J Pharm Sci 82:183–190. https://doi.org/10.1002/jps.2600820214

    Article  CAS  PubMed  Google Scholar 

  35. Dorsey JG, Khaledi MG (1993) Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes. J Chromatogr A 656:485–499. https://doi.org/10.1016/0021-9673(93)80815-P

    Article  CAS  Google Scholar 

  36. Bechalany A, Tsantili-Kakoulidou A, El Tayar N, Testa B (1991) Measurement of lipophilicity indices by reversed-phase high-performance liquid chromatography: comparison of two stationary phases and various eluents. J Chromatogr 541:221–229. https://doi.org/10.1016/S0021-9673(01)95994-1

    Article  CAS  Google Scholar 

  37. Giaginis C, Tsantili-Kakoulidou A (2008) Current state of the art in HPLC methodology for lipophilicity assessment of basic drugs. A review. J Liq Chromatogr Relat Technol 31(1):79–96. https://doi.org/10.1080/10826070701665626

    Article  CAS  Google Scholar 

  38. Van de Waterbeemd H, Kansy M, Wagner B, Fischer H (1996) Lipophilicity measurement by high performance liquid chromatography (RP-HPLC). In: Pilska V, Testa B, Van de Waterbeemd H (eds) Lipophilicity in drug action and toxicology. VCH, Weinheim, p 73. https://doi.org/10.1002/9783527614998.ch5

    Chapter  Google Scholar 

  39. Vrakas D, Panderi I, Hadjipavlou-Litina D, Tsantili-Kakoulidou A (2005) Investigation of the relationships between logP and various chromatographic indices for a series of substituted coumarins. Evaluation of their similarity/dissimilarity using multivariate statistics. Quant Struct Act Relat 24:254–269. https://doi.org/10.1002/qsar.200430898

    Article  CAS  Google Scholar 

  40. Pagliara A, Khamis E, Trinh A et al (1995) Structural properties governing retention mechanisms on RP-HPLC stationary phases used for lipophilicity measurements. J Liq Chromatogr 18(9):1721–1745. https://doi.org/10.1080/10826079508010002

    Article  CAS  Google Scholar 

  41. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2013) Octanol/water partitioning simulation by RP-HPLC for structurally diverse acidic drugs: comparison of three columns in the presence and absence of n-octanol as the mobile phase additive. J Sep Sci 36:3830–3836. https://doi.org/10.1002/jssc.201300711

    Article  CAS  PubMed  Google Scholar 

  42. Tsantili-Kakoulidou A, Antoniadou-Vyza A (1989) Determination of the partition coefficients of adamantyl derivatives by reversed phase TLC and HPLC. Prog Clin Biol Res 291:71–74

    CAS  PubMed  Google Scholar 

  43. Valko K, Bevan C, Reynolds D (1997) Chromatographic hydrophobicity index by fast-gradient RPHPLC: a high-throughput alternative to log P/log D. Anal Chem 69:2022–2029. https://doi.org/10.1021/ac961242d

    Article  CAS  PubMed  Google Scholar 

  44. Valko K (2004) Application of high-performance liquid chromatography based measurements of lipophilicity to model biological distribution. J Chromatogr A 1037:299–310. https://doi.org/10.1016/j.chroma.2003.10.084

    Article  CAS  PubMed  Google Scholar 

  45. Valko K, Slegel P (1993) New chromatographic hydrophobicity index (φ0) based on the slope and the intercept of the log k_ versus organic phase concentration plot. J Chromatogr A 631:49–61. https://doi.org/10.1016/0021-9673(93)80506-4

    Article  CAS  Google Scholar 

  46. Lombardo F, Shalaeva MY, Tupper KA, Gao F (2001) ElogDoct: a tool for Lipophilicity determination in drug discovery. 2. Basic and neutral compounds. J Med Chem 44(15):2490–2497. https://doi.org/10.1021/jm0100990

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Tanaka H, Yamauchi A et al (2005) Determination of lipophilicity by reversed-phase high-performance liquid chromatography: influence of 1-octanol in the mobile phase. J Chromatogr A 1091:51–59. https://doi.org/10.1016/j.chroma.2005.07.029

    Article  CAS  PubMed  Google Scholar 

  48. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2006) Contribution to the standardization of the chromatographic conditions for the lipophilicity assessment of neutral and basic drugs. Anal Chim Acta 573:311–318. https://doi.org/10.1016/j.aca.2006.03.074

    Article  CAS  PubMed  Google Scholar 

  49. Giaginis C, Theocharis S, Tsantili-Kakoulidou A (2007) Octanol/water partitioning simulation by reversed phase HPLC for structurally diverse acidic drugs: effect of octanol as mobile phase additive. J Chromatogr A 1166:116–125. https://doi.org/10.1016/j.chroma.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  50. Schoenmakers PJ, Billiet HAH, de Galan L (1979) Influence of organic modifiers on the retention behaviour in reversed-phase liquid chromatography and its consequences for gradient elution. J Chromatogr 185:179–195. https://doi.org/10.1016/S0021-9673(00)85604-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tsantili-Kakoulidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Giaginis, C., Tsopelas, F., Tsantili-Kakoulidou, A. (2018). The Impact of Lipophilicity in Drug Discovery: Rapid Measurements by Means of Reversed-Phase HPLC. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics