Skip to main content

Molecular Dynamics Simulations on the Bioactive Molecule of hIAPP22–29 (NFGAILSS) and Rational Drug Design

  • Protocol
  • First Online:
Rational Drug Design

Abstract

This chapter includes information about the structure in equilibrium of the bioactive molecule hIAPP22–29 (NFGAILSS). The experimental structure was derived using X-ray and its 2D NOESY NMR experiments in d 6-DMSO and d-HFIP solvents. This molecule contains eight of the ten amino acids of the 20–29 region of the human islet amyloid polypeptide (hIAPP) often referred as the “amyloidogenic core.” Amyloid deposits are well-known to cause as many as 20 pathological neurodegenerative disorders such as Alzheimer, Parkinson, Huntington, and Creutzfeldt-Jakob. The experimental structure was relaxed using molecular dynamics (MD) in simulation boxes consisting in DMSO and HFIP; the latter not provided by the applied software. The calculations were performed in GPUs and supercomputers, and some basic scripting is described for reference. The simulations confirmed the inter- and intramolecular forces that led to an “amyloidogenic core” observed from NOE experiments. The results showed that in DMSO and HFIP environment, Phe is not in spatial proximity with Leu or Ile, and this is consistent with an amyloidogenic core. However, in an amphipathic environment such as the model lipid bilayers, this communication is possible and may influence peptide amyloidogenic properties. The knowledge gained through this study may contribute to the rational drug design of novel peptides or organic molecules acting by modifying preventing amyloidogenic properties of the hIAPP peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seuring C, Verasdonck J, Ringler P, Cadalbert R, Stahlberg H, Bockmann A, Meier BH, Riek R (2017) Amyloid fibril polymorphism: almost identical on the atomic level, mesoscopically very different. J Phys Chem B 121(8):1783–1792. https://doi.org/10.1021/acs.jpcb.6b10624

    Article  CAS  PubMed  Google Scholar 

  2. Westermark P, Wernstedt C, Wilander E et al (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A 84:3881–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooper G, Willis A, Clark A, Turner R, Sim R, Reid K (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type II diabetic patients. Proc Natl Acad Sci U S A 84:8628–8632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clark A, Cooper GJ, Lewis CE et al (1987) Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 2:231–234. https://doi.org/10.1016/S0140-6736(87)90825-7

    Article  CAS  PubMed  Google Scholar 

  5. Tracz SM, Abedini A, Driscoll M, Raleigh DP (2004) Role of aromatic interactions in amyloid formation by peptides derived from human amylin. Biochemistry 43(50):15901–15908. https://doi.org/10.1021/bi048812l

    Article  CAS  PubMed  Google Scholar 

  6. Milardi D, Sciacca MF, Pappalardo M et al (2011) The role of aromatic side-chains in amyloid growth and membrane interaction of the islet amyloid polypeptide fragment LANFLVH. Eur Biophys J 40(1):1–12. https://doi.org/10.1007/s00249-010-0623-x

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty S, Chatterjee B, Basu S (2012) Mechanistic insight into the amyloidogenic structure of hiapp peptide revealed from sequence analysis and molecular dynamics simulation. Biophys Chem 168–169:1–9. https://doi.org/10.1016/j.bpc.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  8. Mo Y, Lu Y, Wei G, Derrumaux P (2009) Structural diversity of the soluble trimers of the human amylin (20–29) peptide revealed by molecular dynamics simulations. J Chem Phys 130(12):125101. https://doi.org/10.1063/1.3097982

    Article  CAS  PubMed  Google Scholar 

  9. Soriaga A, Smriti S, Macdonald R, Sawaya M (2016) Crystal structures of IAPP amyloidogenic segments reveal a novel packing motif of out-of-register beta studies. J Phys Chem 120(26):5810–5816. https://doi.org/10.1021/acs.jpcb.5b09981

    Article  CAS  Google Scholar 

  10. Wiltzius J, Sievers S, Sawaya M et al (2008) Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin). Protein Sci 17(9):1467–1474. https://doi.org/10.1110/ps.036509.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo J, Zhang Y, Ning L et al (2014) Stabilities and structures of islet amyloid polypeptide (IAPP22-28) oligomers: from dimer to 16 mer. Biochim Biophys Acta 1840(1):357–366. https://doi.org/10.1016/j.bbagen.2013.09.012

    Article  CAS  PubMed  Google Scholar 

  12. Profit A, Vedad J, Saleh M, Desamero R (2015) Aromaticity and amyloid formation: effect of π-electron distribution and aryl substituent geometry on the self-assembly of peptides derived from hIAPP22-29. Arch Biochem Biophys 567:46–58

    Article  CAS  PubMed  Google Scholar 

  13. Profit A, Felsen V, Chinwong J et al (2012) Evidence of π-stacking interactions in the self-assembly of hIAPP22-29. Proteins 81(4):690–703. https://doi.org/10.1002/prot.24229

    Article  CAS  Google Scholar 

  14. Prakash R, Nanga R, Brender J, Vivekanandan S, Ramamoorthy A (2011) Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment. Biochim Biophys Acta 1808:2337–2342. https://doi.org/10.1016/j.bbamem.2011.06.012

    Article  CAS  Google Scholar 

  15. Mascioni A, Porcelli A, Ilangovan U et al (2003) Conformational preferences of the amylin nucleation site in SDS micelles: an nmr study. Biopolymers 69(1):29–41. https://doi.org/10.1002/bip.10305

    Article  CAS  PubMed  Google Scholar 

  16. Weirich F, Gremer L, Mirecka E et al (2016) Structural characterization of fibrils from recombinant human islet amyloid polypeptide by solid-state NMR: the central fgails segment is part of the β-sheet core. PLoS One 11(9):e0161243. https://doi.org/10.1371/journal.pone.0161243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mavromoustakos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lagarias, P. et al. (2018). Molecular Dynamics Simulations on the Bioactive Molecule of hIAPP22–29 (NFGAILSS) and Rational Drug Design. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics