Skip to main content

Systems Biology Analysis to Understand Regulatory miRNA Networks in Lung Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1819))

Abstract

Lung cancer has currently the highest cancer-related mortality rate worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that play a fundamental role in gene expression and are linked to disease progression of different cancer types such as lung cancer. However, functional characterization is made difficult by the fact that miRNAs generally regulate several mRNA interaction partners, resulting in complex regulatory networks. Thus, analysis of the network biology of miRNAs is essential for comprehensive understanding of their regulatory effects in lung cancer. A deeper understanding of miRNA networks in cancer could finally serve as a basis for the development of new therapeutic interventions. Here, we present a systems biology approach to analyze regulatory miRNA interaction networks to get better insight into their function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yao Y, Fan Y, Wu J, Wan H, Wang J, Lam S, Lam WL, Girard L, Gazdar AF, Wu Z, Zhou Q (2012) Potential application of non-small cell lung cancer-associated autoantibodies to early cancer diagnosis. Biochem Biophys Res Commun 423(3):613–619. https://doi.org/10.1016/j.bbrc.2012.06.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kunz M, Wolf B, Schulze H, Atlan D, Walles T, Walles H, Dandekar T (2016) Non-coding RNAs in lung Cancer: contribution of bioinformatics analysis to the development of non-invasive diagnostic tools. Genes 8(1). https://doi.org/10.3390/genes8010008

    Article  PubMed Central  Google Scholar 

  3. Kunz M, Xiao K, Liang C, Viereck J, Pachel C, Frantz S, Thum T, Dandekar T (2015) Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol 89(Pt A):3–10. https://doi.org/10.1016/j.yjmcc.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  4. Kasinski AL, Kelnar K, Stahlhut C, Orellana E, Zhao J, Shimer E, Dysart S, Chen X, Bader AG, Slack FJ (2015) A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34(27):3547–3555. https://doi.org/10.1038/onc.2014.282

    Article  CAS  PubMed  Google Scholar 

  5. Montani F, Marzi MJ, Dezi F, Dama E, Carletti RM, Bonizzi G, Bertolotti R, Bellomi M, Rampinelli C, Maisonneuve P, Spaggiari L, Veronesi G, Nicassio F, Di Fiore PP, Bianchi F (2015) miR-Test: a blood test for lung cancer early detection. J Nat Cancer Inst 107(6):djv063. https://doi.org/10.1093/jnci/djv063

    Article  CAS  PubMed  Google Scholar 

  6. Leidinger P, Keller A, Meese E (2011) MicroRNAs – important molecules in lung Cancer research. Front Genet 2:104. https://doi.org/10.3389/fgene.2011.00104

    Article  PubMed  Google Scholar 

  7. Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T (2013) Meta-analysis of microRNA expression in lung cancer. Int J Cancer 132(12):2884–2893. https://doi.org/10.1002/ijc.27981

    Article  CAS  PubMed  Google Scholar 

  8. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(D1):D68–D73. https://doi.org/10.1093/nar/gkt1181

    Article  CAS  PubMed  Google Scholar 

  9. Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44(D1):D239–D247. https://doi.org/10.1093/nar/gkv1258

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kunz M, Dandekar T, Naseem M (2017) A systems biology methodology combining transcriptome and interactome datasets to assess the implications of cytokinin signaling for plant immune networks. Methods in Mol Biol 1569:165–173. https://doi.org/10.1007/978-1-4939-6831-2_14

    Google Scholar 

  11. Naseem M, Kunz M, Dandekar T (2014) Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches. Bioinform Biol Insights 8:35–44. https://doi.org/10.4137/BBI.S13462

    Article  Google Scholar 

  12. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  PubMed  PubMed Central  Google Scholar 

  13. Team RDC (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  14. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davis S, Meltzer PS (2007) GEOquery: a bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England) 23(14):1846–1847. https://doi.org/10.1093/bioinformatics/btm254

    Article  PubMed  Google Scholar 

  16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  17. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S (2009) gplots: various R programming tools for plotting data. R package version 2 (4)

    Google Scholar 

  18. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. Jan 13;4:2. Epub 2003 Jan 13. (https://www.ncbi.nlm.nih.gov/pubmed/12525261)

  20. Bonnici V, Russo F, Bombieri N, Pulvirenti A, Giugno R (2014) Comprehensive reconstruction and visualization of non-coding regulatory networks in human. Front Bioeng Biotechnol 2:69. https://doi.org/10.3389/fbioe.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kitai H, Ebi H (2016) Key roles of EMT for adaptive resistance to MEK inhibitor in KRAS mutant lung cancer. Small GTPases 8:1–5. https://doi.org/10.1080/21541248.2016.1210369

    Article  CAS  Google Scholar 

  22. Kimura H, Fumoto K, Shojima K, Nojima S, Osugi Y, Tomihara H, Eguchi H, Shintani Y, Endo H, Inoue M, Doki Y, Okumura M, Morii E, Kikuchi A (2016) CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Invest 126(7):2689–2705. https://doi.org/10.1172/jci84658

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park SH, Seong MA, Lee HY (2016) p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells. Oncotarget 7(7):8184–8199. https://doi.org/10.18632/oncotarget.6945

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y, Chen R (2016) NPInter v3.0: an upgraded database of noncoding RNA-associated interactions. Database 2016:baw057-baw057. doi:https://doi.org/10.1093/database/baw057

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  CAS  PubMed  Google Scholar 

  26. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen Egon L, Bohler A, Mélius J, Waagmeester A, Sinha Sravanthi R, Miller R, Coort SL, Cirillo E, Smeets B, Evelo Chris T, Pico AR (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44(D1):D488–D494. https://doi.org/10.1093/nar/gkv1024

    Article  CAS  PubMed  Google Scholar 

  27. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093. https://doi.org/10.1093/bioinformatics/btp101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robles AI, Arai E, Mathé EA, Okayama H, Schetter AJ, Brown D, Petersen D, Bowman ED, Noro R, Welsh JA, Edelman DC, Stevenson HS, Wang Y, Tsuchiya N, Kohno T, Skaug V, Mollerup S, Haugen A, Meltzer PS, Yokota J, Kanai Y, Harris CC (2015) An integrated prognostic classifier for stage I lung adenocarcinoma based on mRNA, microRNA and DNA methylation biomarkers. J Thoracic Oncol 10(7):1037–1048. https://doi.org/10.1097/JTO.0000000000000560

    Article  CAS  Google Scholar 

  29. Quackenbush J Microarray data normalization and transformation. Nature Genetics 32:496–501. https://www.nature.com/articles/ng1032

    Article  CAS  PubMed  Google Scholar 

  30. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics (Oxford, England) 4(2):249–264. https://doi.org/10.1093/biostatistics/4.2.249

    Article  Google Scholar 

  31. Biecek MKaP (2016) RTCGA: the cancer genome atlas data integration. R package version 1.6.0.

    Google Scholar 

  32. Taminau J, Meganck S, Lazar C, Steenhoff D, Coletta A, Molter C, Duque R, de Schaetzen V, Weiss Solis DY, Bersini H, Nowe A (2012) Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages. BMC bioinformatics 13:335. https://doi.org/10.1186/1471-2105-13-335

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank BMBF for funding (FKZ: 031L0129B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kunz, M., Pittroff, A., Dandekar, T. (2018). Systems Biology Analysis to Understand Regulatory miRNA Networks in Lung Cancer. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics