Skip to main content
Book cover

Rho GTPases pp 339–355Cite as

Measuring the Contributions of the Rho Pathway to the DNA Damage Response in Tumor Epithelial Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

Actin polymerization, actomyosin ring contraction, and stress fiber formation are examples of relevant actions of the RhoA/B/C pathway as GTPases that regulate the cytoskeleton. However, open questions that remain to be addressed are whether this pathway and/or downstream components protect against or facilitate the formation of DNA double-strand breaks, the most lethal form of DNA damage in cells. Genotoxic drugs are radiomimetic and/or chemotherapeutic agents that are currently used for cancer treatments and are associated with specific methodologies; thus, these compounds should represent good tools to answer these questions. In this chapter, we describe two methods, the alkaline comet assay and homologous/nonhomologous recombination assays, to investigate the mechanism by which the Rho pathway modulates the repair of DNA breaks in tumor epithelial cell lines.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vigil D, Cherfils J, Rossman KL, Der CJ (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 10:842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wennerberg K, Der CJ (2004) Rho-family GTPases: it’s not only Rac and Rho (and I like it). J Cell Sci 117:1301–1312

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell L, Hobbs GA, Aghajanian A, Campbell SL (2013) Redox regulation of Ras and Rho GTPases: mechanism and function. Antioxid Redox Signal 18:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aghajanian A, Wittchen ES, Campbell SL, Burridge K, van der Kammen R (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4:e8045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frisan T, Cortes-Bratti X, Chaves-Olarte E, Stenerlow B, Thelestam M (2003) The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. Cell Microbiol 5:695–707

    Article  CAS  PubMed  Google Scholar 

  6. Dubash AD, Guilluy C, Srougi MC, Boulter E, Burridge K, García-Mata R (2011) The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals. PLoS One 6:e17380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Srougi MC, Burridge K (2011) The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage. PLoS One 6:e17108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osaki JH, Espinha G, Magalhaes YT, Forti FL (2016) Modulation of RhoA GTPase activity sensitizes human cervix carcinoma cells to γ -radiation by attenuating DNA repair pathways. Oxidative Med Cell Longev 2016:1–11

    Article  CAS  Google Scholar 

  9. Guerra L, Carr HS, Richter-Dahlfors A, Masucci MG, Thelestam M, Frost JA, Frisan T (2008) A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS One 3:e2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerra L, Guidi R, Slot I, Callegari S, Sompallae R, Pickett CL, Åström S, Eisele F, Wolf D, Sjögren C, Masucci MG, Frisan T (2011) Bacterial genotoxin triggers FEN1-dependent RhoA activation, cytoskeleton remodeling and cell survival. J Cell Sci 124:2735–2742

    Article  CAS  PubMed  Google Scholar 

  11. Mamouni K, Cristini A, Guirouilh-Barbat J, Monferran S, Lemarié A, Faye J-C, Lopez BS, Favre G, Sordet O (2014) RhoB promotes γH2AX dephosphorylation and DNA double-strand break repair. Mol Cell Biol 34:3144–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  14. Bennardo N, Cheng A, Huang N, Stark JM, Alt F (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4:e1000110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fritz G, Henninger C (2015) Rho GTPases: novel players in the regulation of the DNA damage response? Biomol Ther 5:2417–2434

    CAS  Google Scholar 

  16. Belin BJ, Lee T, Mullins RD (2015) DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair. Elife 4:e07735

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23:191–205

    Article  CAS  PubMed  Google Scholar 

  18. Gunn A, Stark JM (2012) I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 920:379–391

    Article  CAS  PubMed  Google Scholar 

  19. Ascer LG, Magalhaes YT, Espinha G, Osaki JH, Souza RC, Forti FL (2015) Cdc42 GTPase activation affects Hela cell DNA repair and proliferation following UV radiation-induced genotoxic stress. J Cell Biochem 116:2086–2097

    Article  CAS  PubMed  Google Scholar 

  20. Espinha G, Osaki JH, Costa ET, Forti FL (2016) Inhibition of the RhoA GTPase activity increases sensitivity of melanoma cells to UV radiation effects. Oxidative Med Cell Longev 2016:2696952

    Article  CAS  Google Scholar 

  21. Espinha G, Osaki JH, Magalhaes YT, Forti FL (2015) Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 404:281–297

    Article  CAS  PubMed  Google Scholar 

  22. Rastogi RP, Richa Kumar A, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010:592980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Borrego-Soto G, Ortiz-López R, Rojas-Martínez A (2015) Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol 38:420–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo N, Takahashi A, Ono K, Ohnishi T (2010) DNA damage induced by alkylating agents and repair pathways. J Nucleic Acids 2010:543531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siu WY, Lau A, Arooz T, Chow JPH, Ho HTB, Poon RYC (2004) Topoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated–dependent and –independent mechanisms. Mol Cancer Ther 3:621–632

    PubMed  CAS  Google Scholar 

  26. Seluanov A, Mao Z, Gorbunova V (2010) Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp 2010:2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Forti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magalhães, Y.T., Farias, J.O., Monteiro, L.F., Forti, F.L. (2018). Measuring the Contributions of the Rho Pathway to the DNA Damage Response in Tumor Epithelial Cells. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics