Skip to main content

Uncovering Bistability in the Rac1/RhoA Signaling Network Through Integrating Computational Modeling and Experimentation

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

The members of the Rho family of small guanosine triphosphatases (GTPases), Rac1 and RhoA, play critical roles in the regulation of cell migration, actin dynamics, and cytoskeletal system. It has been long known that a mutual inhibition relationship exists between Rac1 and RhoA, and the Rac1/RhoA circuitry has been theoretically predicted to be capable of displaying bistability, a phenomenon whereby a system could settle in either one of the two stable steady states. However, it was only until recently that bistable behavior was demonstrated experimentally both at the biochemical and cellular phenotypic levels, through an integrative approach combining computational modeling and wet-lab experimentation. Here, we describe how such systems biology approaches could be employed to uncover bistability and its hallmark features, using the Rac1/RhoA network as an illustrative example. This may provide guidance for future work aimed at identifying bistable behaviors in other cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101

    Article  CAS  Google Scholar 

  2. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys J 94:3684–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsyganov MA, Kolch W, Kholodenko BN (2012) The topology design principles that determine the spatiotemporal dynamics of G-protein cascades. Mol BioSyst 8:730–743

    Article  CAS  PubMed  Google Scholar 

  5. Byrne KM, Monsefi N, Dawson JC, Degasperi A, Bukowski-Will JC, Volinsky N, Dobrynski M, Birtwistle MR, Tsyganov MA, Kiyatkin A, Kida K, Finch AJ, Carragher NO, Kolch W, Nguyen LK, von Kriegsheim A, Kholodenko BN (2016) Bistability in the Rac1, PAK, and RhoA signaling network drives actin cytoskeleton dynamics and cell motility switches. Cell Syst 2:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nguyen LK, Kholodenko BN, von Kriegsheim A (2016) Rac1 and RhoA: networks, loops and bistability. Small GTPases. https://doi.org/10.1080/21541248.2016.1224399

  7. Mathematica Version 10.1. Wolfram Research, http://wolfram.com/mathematica

  8. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  PubMed  Google Scholar 

  9. Matsuoka Y, Funahashi A, Ghosh S, Kitano H (2014) Modeling and simulation using CellDesigner. Methods Mol Biol 1164:121–145

    Article  CAS  PubMed  Google Scholar 

  10. XPPAUT, http://www.math.pitt.edu/~bard/xpp/xpp.html

  11. Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  12. Nguyen LK, Degasperi A, Cotter P, Kholodenko BN (2015) DYVIPAC: an integrated analysis and visualisation framework to probe multi-dimensional biological networks. Sci Rep 5:12569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  14. Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15:322–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Viaud J, Peterson JR (2009) An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol Cancer Ther 8:2559–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shin S, Nguyen LK (2016) Dissecting cell-fate determination through integrated modelling of the ERK/MAPK signalling pathway. Methods Mol Biol 1487:409–432

    Article  CAS  Google Scholar 

  18. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  CAS  PubMed  Google Scholar 

  19. Chesarone MA, Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol 21:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riedl J, Crevenna AH, Kessenbrock A, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dobrzynski M, Nguyen LK, Britwistle MR, von Kriegsheim A, Blanco Fernández A, Cheong A, Kolch W, Kholodenko BN (2014) Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses. J R Soc Interface 11:20140383

    Article  PubMed  PubMed Central  Google Scholar 

  23. Birtwistle MR, Rauch J, Kiyatkin A, Aksamitiene E, Dobrzynski M, Hoek JB, Kolch w, Ogunnaike BA, Kholodenko BN (2012) Emergence of bimodal cell population responses from the interplay between analog single-cell signaling and protein expression noise. BMC Syst Biol 6:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    Article  CAS  PubMed  Google Scholar 

  25. von Thun A, Preisinger C, Rath O, Schwarz JP, Ward C, Monsefi N, Rodríguez J, García-Muñoz A, Birtwistle N, Bienvenut W, Anderson KI, Kolch W, von Kriegsheim A (2013) Extracellular signal-regulated kinase regulates RhoA activation and tumor cell plasticity by inhibiting guanine exchange factor H1 activity. Mol Cell Biol 33:4526–4537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan K. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

von Kriegsheim, A., Nguyen, L.K. (2018). Uncovering Bistability in the Rac1/RhoA Signaling Network Through Integrating Computational Modeling and Experimentation. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics