Skip to main content

Methods to Investigate the Role of Rho GTPases in Osteoclast Function

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

The actin cytoskeleton is essential for the biology of osteoclasts, in particular during bone resorption. As key regulators of actin dynamics, the small GTPases of the Rho family are very important in the control of osteoclast activity. The study of Rho GTPase signaling pathways is essential to uncover the mechanisms of bone resorption and can have interesting applications for the treatment of osteolytic diseases. In this chapter, we describe various techniques to obtain primary osteoclasts from murine bone marrow cells, to measure Rho GTPase activation levels, to monitor bone resorption activity of osteoclasts and to introduce the expression of proteins of interest using a retroviral approach. We illustrate the different methods with experimental examples of the effect of Rac1 activation by the exchange factor Dock5 on bone resorption by osteoclasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Terpos E, Confavreux CB, Clézardin P (2015) Bone antiresorptive agents in the treatment of bone metastases associated with solid tumours or multiple myeloma. Bonekey Rep 4:744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harre U, Schett G (2017) Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin Immunopathol 39:355–363

    Article  CAS  PubMed  Google Scholar 

  4. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  5. Georgess D, Machuca-Gayet I, Blangy A, Jurdic P (2014) Podosome organization drives osteoclast-mediated bone resorption. Cell Adhes Migr 8:191–204

    Article  Google Scholar 

  6. Touaitahuata H, Blangy A, Vives V (2014) Modulation of osteoclast differentiation and bone resorption by rho GTPases. Small GTPases 5:e28119

    Article  PubMed  PubMed Central  Google Scholar 

  7. Takito J, Otsuka H, Inoue S, Kawashima T, Nakamura M (2017) Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion. Biol Open 6:1104–1114

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brazier H, Stephens S, Ory S, Fort P, Morrison N, Blangy A (2006) Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts. J Bone Miner Res 21:1387–1398

    Article  CAS  PubMed  Google Scholar 

  9. Ory S, Brazier H, Pawlak G, Blangy A (2008) Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87:469–477

    Article  CAS  PubMed  Google Scholar 

  10. Chellaiah MA, Soga N, Swanson S, McAllister S, Alvarez U, Wang D, Dowdy SF, Hruska KA (2000) Rho-a is critical for osteoclast podosome organization, motility, and bone resorption. J Biol Chem 275:11993–12002

    Article  CAS  PubMed  Google Scholar 

  11. Ory S, Munari-Silem Y, Fort P, Jurdic P (2000) Rho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation. J Cell Sci 113:1177–1188

    PubMed  CAS  Google Scholar 

  12. Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL (2011) Rac deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 124:3811–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leung R, Cuddy K, Wang Y, Rommens J, Glogauer M (2011) Sbds is required for Rac2-mediated monocyte migration and signaling downstream of RANK during osteoclastogenesis. Blood 117:2044–2053

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270

    Article  CAS  PubMed  Google Scholar 

  15. Zhu M, Sun B, Saar K, Simpson C, Troiano N, Dallas SL, Tiede-Lewis LM, Nevius E, Pereira JP, Weinstein RS, Tommasini SM, Insogna KL (2016) Deletion of Rac in mature osteoclasts causes osteopetrosis, an age-dependent change in osteoclast number, and a reduced number of osteoblasts in vivo. J Bone Miner Res 31:864–873

    Article  CAS  PubMed  Google Scholar 

  16. Brazier H, Pawlak G, Vives V, Blangy A (2009) The rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 41:1391–1401

    Article  CAS  PubMed  Google Scholar 

  17. Ory S, Brazier H, Blangy A (2007) Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a rho family GTPase that regulates cell adhesion and migration. Biol Cell 99:701–716

    Article  CAS  PubMed  Google Scholar 

  18. Georgess D, Mazzorana M, Terrado J, Delprat C, Chamot C, Guasch RM, Pérez-Roger I, Jurdic P, Machuca-Gayet I (2014) Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts. Mol Biol Cell 25:380–396

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ito Y, Teitelbaum SL, Zou W, Zheng Y, Johnson JF, Chapel J, Ross FP, Zhao H (2010) Cdc42 regulates bone modeling and remodeling in mice by modulating RANKL/M-CSF signaling and osteoclast polarization. J Clin Invest 120:1981–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fort P, Blangy A (2017) The evolutionary landscape of Dbl-like RhoGEF families: adapting eukaryotic cells to environmental signals. Genome Biol Evol 9:1471–1486

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gadea G, Blangy A (2014) Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 93:466–477

    Article  CAS  PubMed  Google Scholar 

  22. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86

    Article  CAS  PubMed  Google Scholar 

  23. Vives V, Laurin M, Cres G, Larrousse P, Morichaud Z, Noel D, Coté JF, Blanchy A (2011) The Rac1 exchange factor Dock5 is essential for bone resorption by osteoclasts. J Bone Miner Res 26:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, Ross FP, Swat W (2005) Vav3 regulates osteoclast function and bone mass. Nat Med 11:284–290

    Article  CAS  Google Scholar 

  25. Takegahara N, Kang S, Nojima S, Takamatsu H, Okuno T, Kikutani H, Toyofuku T, Kumanogoh A (2010) Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 24:4782–4792

    Article  CAS  PubMed  Google Scholar 

  26. Steenblock C, Heckel T, Czupalla C, Espírito Santo AI, Niehage C, Sztacho M, Hoflack B (2014) The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts. J Biol Chem 289:18347–18359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mullin BH, Mamotte C, Prince RL, Wilson SG (2014) Influence of ARHGEF3 and RHOA knockdown on ACTA2 and other genes in osteoblasts and osteoclasts. PLoS One 9:e98116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McMichael BK, Scherer KF, Franklin NC, Lee BS (2014) The RhoGAP activity of myosin IXB is critical for osteoclast podosome patterning, motility, and resorptive capacity. PLoS One 9:e87402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vives V, Cres G, Richard C, Busson M, Ferrandez Y, Planson AG, Zeghouf M, Cherflis J, Malaval L, Blangy A (2015) Pharmacological inhibition of Dock5 prevents osteolysis by affecting osteoclast podosome organization while preserving bone formation. Nat Commun 6:6218

    Article  CAS  PubMed  Google Scholar 

  30. Lassaux A, Sitbon M, Battini JL (2005) Residues in the murine leukemia virus capsid that differentially govern resistance to mouse Fv1 and human Ref1 restrictions. J Virol 79:6560–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Battini JL, Rasko JE, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci U S A 96:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from CNRS and Montpellier University and by grants from the Fondation pour la Recherche Médicale to A.B. (reference Equipe FRM DEQ20160334933) and the Fondation ARC pour la Recherche sur le Cancer to V.V. (reference Projet Fondation ARC PJA 20151203109). Imaging was performed at the MRI Montpellier Ressources Imagerie imaging facility of Montpellier, France (www.mri.cnrs.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Blangy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morel, A., Blangy, A., Vives, V. (2018). Methods to Investigate the Role of Rho GTPases in Osteoclast Function. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics