Skip to main content

Behavioral Assays in the Study of Olfaction: A Practical Guide

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

Abstract

Olfaction is a fundamental sense in most animal species. In mammals, the olfactory system comprises several subpopulations of sensory neurons located throughout the nasal cavity, which detect a variety of chemostimuli, including odorants, intraspecies and interspecies chemical communication cues. Some of these compounds are important for regulating innate and learned behaviors, and endocrine changes in response to other animals in the environment. With a particular focus on laboratory rodent species, this chapter provides a comprehensive description of the most important behavioral assays used for studying the olfactory system, and is meant to be a practical guide for those who study olfaction-mediated behaviors or who have an interest in deciphering the molecular, cellular, or neural mechanisms through which the sense of smell controls the generation of adaptive behavioral outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  PubMed  CAS  Google Scholar 

  2. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  PubMed  Google Scholar 

  3. Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yang T, Yang CF, Chizari MD et al (2017) Social control of hypothalamus-mediated male aggression. Neuron 95(4):955–970.e4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Chamero P, Marton TF, Logan DW et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  PubMed  CAS  Google Scholar 

  6. Kikusui T (2013) Analysis of male aggressive and sexual behavior in mice. Methods Mol Biol 1068:307–318

    Article  PubMed  CAS  Google Scholar 

  7. Jakubowski M, Terkel J (1982) Infanticide and caretaking in non-lactating Mus musculus: influence of genotype, family group and sex. Anim Behav 30:1029–1035

    Article  Google Scholar 

  8. Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    Article  PubMed  CAS  Google Scholar 

  9. McCarthy MM, Vom Saal FS (1986) Inhibition of infanticide after mating by wild male house mice. Physiol Behav 36:203–209

    Article  PubMed  CAS  Google Scholar 

  10. Rangel MJ Jr, Baldo MVC, Canteras NS et al (2016) Evidence of a role for the lateral hypothalamic area juxtadorsomedial region (LHAjd) in defensive behaviors associated with social defeat. Front Syst Neurosci 10:1–12

    Article  Google Scholar 

  11. Rokni D, Hemmelder V, Kapoor V et al (2014) An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat Neurosci 17:1225–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Qiu Q, Scott A, Scheerer H et al (2014) Automated analyses of innate olfactory behaviors in rodents. PLoS One 9:e93468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Root CM, Denny CA, Hen R et al (2014) The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515:269–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jones SV, Heldt SA, Davis M et al (2005) Olfactory-mediated fear conditioning in mice: simultaneous measurements of fear-potentiated startle and freezing. Behav Neurosci 119:329–335

    Article  PubMed  PubMed Central  Google Scholar 

  15. Scott JP (1966) Agonistic behavior of mice and rats: a review. Am Zool 6:683–701

    Article  PubMed  CAS  Google Scholar 

  16. Rowe FA, Edwards DA (1971) Olfactory bulb removal: influences on the aggressive behaviors of male mice. Physiol Behav 7:889–892

    Article  PubMed  CAS  Google Scholar 

  17. Stowers L, Holy TE, Meister M et al (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  PubMed  CAS  Google Scholar 

  18. Logan DW, Marton TF, Stowers L (2008) Species specificity in major urinary proteins by parallel evolution. PLoS One 3:e3280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662

    Article  PubMed  CAS  Google Scholar 

  20. Chamero P, Katsoulidou V, Hendrix P et al (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci U S A 108(31):12898–12903

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loconto J, Papes F, Chang E et al (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618

    Article  PubMed  CAS  Google Scholar 

  22. Leinders-Zufall T, Brennan P, Widmayer P et al (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  PubMed  CAS  Google Scholar 

  23. Miczek KA, Maxson SC, Fish EW et al (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    Article  PubMed  CAS  Google Scholar 

  24. Jang H, Bargmann CI (2013) Acute behavioral responses to pheromones in C. elegans (adult behaviors: attraction, repulsion). Methods Mol Biol 1068:285–292

    Article  PubMed  CAS  Google Scholar 

  25. Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Article  Google Scholar 

  26. Jones Brain PS (1987) Performances of inbred and outbred laboratory mice in putative tests of aggression. Behav Genet 17:87–96

    Article  PubMed  Google Scholar 

  27. Abramov U, Puussaar T, Raud S et al (2008) Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment. Neurosci Lett 443:223–227

    Article  PubMed  CAS  Google Scholar 

  28. Rich TJ, Hurst JL (1999) The competing countermarks hypothesis: reliable assessment of competitive ability by potential mates. Anim Behav 58:1027–1037

    Article  PubMed  CAS  Google Scholar 

  29. Desjardins C, Maruniak JA, Bronson FH (1973) Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939–941

    Article  PubMed  CAS  Google Scholar 

  30. Kaur AW, Ackels T, Kuo T-HH et al (2014) Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157:676–688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Arakawa H, Blanchard DC, Arakawa K et al (2008) Scent marking behavior as an odorant communication in mice. Neurosci Biobehav Rev 32(7):1236–1248

    Article  PubMed  PubMed Central  Google Scholar 

  32. Arakawa H, Arakawa K, Blanchard DC et al (2008) A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice. Behav Brain Res 190:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hurst JL (1987) The functions of urine marking in a free-living population of house mice, Mus domesticus Rutty. Anim Behav 35:1433–1442

    Article  Google Scholar 

  34. Ralls K (1971) Mammalian scent marking. Science 171:443–449

    Article  PubMed  CAS  Google Scholar 

  35. Thiessen D, Rice M (1976) Mammalian scent gland marking and social behavior. Psychol Bull 83:505–539

    Article  PubMed  CAS  Google Scholar 

  36. Wolff PR, Powell AJ (1984) Urine patterns in mice: an analysis of male/female counter-marking. Anim Behav 32:1185–1191

    Article  Google Scholar 

  37. Logan DW, Brunet LJ, Webb WR et al (2012) Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr Biol 22:1998–2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang F, Kessels HW, Hu H (2014) The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 37:674–682

    Article  PubMed  CAS  Google Scholar 

  39. Lindzey G, Winston H, Manosevitz M (1961) Social dominance in inbred mouse strains. Nature 191:474–476

    Article  PubMed  CAS  Google Scholar 

  40. Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3:1–10

    Article  CAS  Google Scholar 

  41. Wang Z, Phan T, Storm DR (2011) The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci 31:5557–5561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Messeri P, Eleftheriou BE, Oliverio A (1975) Dominance behavior: a phylogenetic analysis in the mouse. Physiol Behav 14:53–58

    Article  PubMed  CAS  Google Scholar 

  43. Merlot E, Moze E, Bartolomucci A et al (2004) The rank assessed in a food competition test influences subsequent reactivity to immune and social challenges in mice. Brain Behav Immun 18:468–475

    Article  PubMed  CAS  Google Scholar 

  44. Silverman JL, Yang M, Lord C et al (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ryan BC, Young NB, Moy SS et al (2008) Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res 193:235–242

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moy SS, Nadler JJ, Perez A (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302

    Article  PubMed  CAS  Google Scholar 

  47. Kaidanovich-beilin O, Lipina T, Vukobradovic I et al (2011) Assessment of social interaction behaviors. J Vis Exp (48):2473

    Google Scholar 

  48. Winans SS, Powers JB (1974) Neonatal and two-stage olfactory bulbectomy: effects on male hamster sexual behavior. Behav Biol 10:461–471

    Article  PubMed  CAS  Google Scholar 

  49. Haga S, Hattori T, Sato T et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  PubMed  CAS  Google Scholar 

  50. Nyby J, Wysocki CJ, Whitney G et al (1977) Pheromonal regulation of male mouse ultrasonic courtship (Mus musculus). Anim Behav 25:333–341

    Article  PubMed  CAS  Google Scholar 

  51. Leypold BG, Yu CR, Leinders-zufall T et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Burns-Cusato M, Scordalakes EM, Rissman EF (2004) Of mice and missing data: what we know (and need to learn) about male sexual behavior. Physiol Behav 83:217–232

    Article  PubMed  CAS  Google Scholar 

  53. Pomerantz SM, Nunez AA, Jay Bean N (1983) Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol Behav 31:91–96

    Article  PubMed  CAS  Google Scholar 

  54. Bakker J, Honda S, Harada N et al (2002) The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 22:9104–9112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Bendesky A, Kwon Y, Lassance J et al (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kuroda KO, Tachikawa K, Yoshida S et al (2011) Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuropsychopharmacol Biol Psychiatry 35:1205–1231

    Article  PubMed  CAS  Google Scholar 

  57. Tachikawa KS, Yoshihara Y, Kuroda KO (2013) Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 33:5120–5126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Nakahara TS, Cardozo LM, Ibarra-Soria X et al (2016) Detection of pup odors by non-canonical adult vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting status. BMC Biol 14:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wu Z, Autry AE, Bergan JF et al (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Capone F, Bonsignore LT, Cirulli F, et al (2005) Methods in the analysis of maternal behavior in the rodent. Curr Protoc Toxicol. Chapter 13:1–16

    Google Scholar 

  61. Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278

    Article  PubMed  CAS  Google Scholar 

  62. Lonstein JS and Fleming AS (2002) Parental behaviors in rats and mice. Curr Protoc Neurosci. Chapter 8:Unit 8.15

    Google Scholar 

  63. Champagne FA, Curley JP, Keverne EB et al (2007) Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav 91:325–334

    Article  PubMed  CAS  Google Scholar 

  64. Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888

    Article  PubMed  CAS  Google Scholar 

  65. Pedersen CA, Vadlamudi S, Boccia ML et al (2011) Variations in maternal behavior in C57BL/6J mice: behavioral comparisons between adult offspring of high and low pup-licking mothers. Front Psychiatry 2:1–9

    Article  Google Scholar 

  66. Brouette-Lahlou I, Godinot F, Vernet-Maury E (1999) The mother rat’s vomeronasal organ is involved in detection of dodecyl propionate, the pup's preputial gland pheromone. Physiol Behav 66:427–436

    Article  PubMed  CAS  Google Scholar 

  67. Vom Saal FS (1985) Time-contingent change in infanticide and parental behavior induced by ejaculation in male mice. Physiol Behav 34:7–15

    Article  PubMed  CAS  Google Scholar 

  68. Champagne FA, Curley JP, Swaney WT et al (2009) Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav Neurosci 123:469–480

    Article  PubMed  Google Scholar 

  69. Broida J, Svare B (1983) Mice: progesterone and the regulation of strain differences in pregnancy-induced nest building. Behav Neurosci 97:994–1004

    Article  PubMed  CAS  Google Scholar 

  70. Svare B, Gandelman R (1973) Postpartum aggression in mice: experiential and environmental factors. Horm Behav 4:323–334

    Article  Google Scholar 

  71. Giovenardi M, Padoin MJ, Cadore LP et al (1998) Hypothalamic paraventricular nucleus modulates maternal aggression in rats: effects of ibotenic acid lesion and oxytocin antisense. Physiol Behav 63:351–359

    Article  PubMed  CAS  Google Scholar 

  72. Parmigiani S, Francesco Ferrari P, Palanza P (1998) An evolutionary approach to behavioral pharmacology: using drugs to understand proximate and ultimate mechanisms of different forms of aggression in mice. Neurosci Biobehav Rev 23:143–153

    Article  PubMed  CAS  Google Scholar 

  73. Bean NJ, Wysocki CJ (1989) Vomeronasal organ removal and female mouse aggression: the role of experience. Physiol Behav 45:875–882

    Article  PubMed  CAS  Google Scholar 

  74. Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond Ser B Biol Sci 368:20130085

    Article  CAS  Google Scholar 

  76. Svare B, Mann M (1981) Infanticide: genetic, developmental and hormonal influences in mice. Physiol Behav 27:921–927

    Article  PubMed  CAS  Google Scholar 

  77. Deacon RMJ (2006) Assessing nest building in mice. Nat Protoc 1:1117–1119

    Article  PubMed  Google Scholar 

  78. Weber EM, Olsson IAS (2008) Maternal behaviour in Mus musculus sp.: an ethological review. Appl Anim Behav Sci 114:1–22

    Article  Google Scholar 

  79. Vom Saal FS, Howard LS (1982) The regulation of infanticide and parental behavior: implications for reproductive success in male mice. Science 215:1270–1272

    Article  PubMed  CAS  Google Scholar 

  80. Orikasa C, Kondo Y, Katsumata H et al (2017) Vemoronasal signal deficiency enhances parental behavior in socially isolated male mice. Physiol Behav 168:98–102

    Article  PubMed  CAS  Google Scholar 

  81. Kobayakawa K, Kobayakawa R, Matsumoto H et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  PubMed  CAS  Google Scholar 

  82. Dey S, Chamero P, Pru JKK et al (2015) Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161:1334–1344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Bushdid C, Magnasco MO, Vosshall LB et al (2014) Humans can discriminate more than one trillion olfactory stimuli. Science 343:1370–1373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Li Q, Korzan WJ, Ferrero DM et al (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20

    Article  PubMed  CAS  Google Scholar 

  85. Schellinck HM (2001) A simple and reliable test of olfactory learning and memory in mice. Chem Senses 26:663–672

    Article  PubMed  CAS  Google Scholar 

  86. Ren G-L, Huang G-Y, Zheng H et al (2013) Changes in innate and permissive immune responses after HBV transgenic mouse vaccination and llong-term-siRNA treatment. PLoS One 8:e57525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Inokuchi K, Imamura F, Takeuchi H et al (2017) Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses. Nat Commun 8:15977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Endres T, Fendt M (2009) Aversion- vs fear-inducing properties of 2,4,5-trimethyl-3-thiazoline, a component of fox odor, in comparison with those of butyric acid. J Exp Biol 212:2324–2327

    Article  PubMed  CAS  Google Scholar 

  89. Imayoshi I, Sakamoto M, Ohtsuka T et al (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Article  PubMed  CAS  Google Scholar 

  90. Yang M and Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. Chapter 8:Unit 8.24

    Google Scholar 

  91. Cleland TA, Narla VA (2003) Intensity modulation of olfactory acuity. Behav Neurosci 117:1434–1440

    Article  PubMed  Google Scholar 

  92. Luo AH, Cannon EH, Wekesa KS et al (2002) Impaired olfactory behavior in mice deficient in the a subunit of G(o). Brain Res 941:62–71

    Article  PubMed  CAS  Google Scholar 

  93. Lu DC, Zhang H, Zador Z et al (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216–3223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rouby C, Schaal B, Dubois D, Gervais R, Holley A (2002) Olfaction, taste and cognition. Cambridge University Press, Cambridge, UK

    Google Scholar 

  95. Chaudhury D, Manella L, Arellanos A et al (2010) Olfactory bulb habituation to odor stimuli. Behav Neurosci 124:490–499

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zou J, Wang W, Pan YW et al (2015) Methods to measure olfactory behavior in mice. Curr Protoc Toxicol 63:11.18.1–11.18.21

    Article  Google Scholar 

  97. Endler JA (1986) Defense against predators. In: Predator-prey relationships: perspectives and approaches from the study of lower vertebrates, Feder ME, Lauder GV (eds.). University of Chicago Press, Chicago, USA, pp 109–134

    Google Scholar 

  98. Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67:370–375

    Article  PubMed  CAS  Google Scholar 

  99. Blanchard RJ, Parmigiani S, Bjornson C et al (1995) Antipredator behavior of Swiss-Webster mice in a visible burrow system. Aggress Behav 21:123–136

    Article  Google Scholar 

  100. Griebel G, Sanger DJ (1999) The mouse defense test battery: an experimental model of different emotional states. In: Animal models of human emotion and cognition. American Psychological Association, Washington, DC, pp 75–85

    Chapter  Google Scholar 

  101. Blanchard DC, Griebel G, Blanchard RJ (2003) The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463:97–116

    Article  PubMed  CAS  Google Scholar 

  102. Griebel G, Blanchard DC, Jung A et al (1995) Further evidence that the mouse defense test battery is useful for screening anxiolytic and panicolytic drugs: effects of acute and chronic treatment with alprazolam. Neuropharmacology 34:1625–1633

    Article  PubMed  CAS  Google Scholar 

  103. Carvalho VM, Nakahara TS, Cardozo LM et al (2015) Lack of spatial segregation in the representation of pheromones and kairomones in the mouse medial amygdala. Front Neurosci 9:1–19

    Article  CAS  Google Scholar 

  104. Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82

    Article  PubMed  CAS  Google Scholar 

  105. Griebel G, Sanger DJ, Perrault G (1997) Genetic differences in the mouse defense test battery. Aggress Behav 23:19–31

    Article  Google Scholar 

  106. Blanchard RJ, Flannelly KJ, Blanchard DC (1986) Defensive behaviors of laboratory and wild Rattus norvegicus. J Comp Psychol 100:101–107

    Article  PubMed  CAS  Google Scholar 

  107. Blanchard RJ, Caroline Blanchard D (1977) Aggressive behavior in the rat. Behav Biol 21:197–224

    Article  PubMed  CAS  Google Scholar 

  108. Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25:205–218

    Article  PubMed  CAS  Google Scholar 

  109. Dielenberg RA, Hunt GE, McGregor IS (2001) “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104:1085–1097

    Article  PubMed  CAS  Google Scholar 

  110. Hebb ALO, Zacharko RM, Gauthier M et al (2004) Brief exposure to predator odor and resultant anxiety enhances mesocorticolimbic activity and enkephalin expression in CD-1 mice. Eur J Neurosci 20:2415–2429

    Article  PubMed  Google Scholar 

  111. Kemble ED, Bolwahnn BL (1997) Immediate and long-term effects of novel odors on risk assessment in mice. Physiol Behav 61:543–549

    Article  PubMed  CAS  Google Scholar 

  112. Blanchard DC, Blanchard RJ, Tom P et al (1990) Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology 101:511–518

    Article  PubMed  CAS  Google Scholar 

  113. Masini CV, Garcia RJ, Sasse SK et al (2010) Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats. Behav Brain Res 207:70–77

    Article  PubMed  CAS  Google Scholar 

  114. Samuelsen CL, Meredith M (2009) The vomeronasal organ is required for the male mouse medial amygdala response to chemical-communication signals, as assessed by immediate early gene expression. Neuroscience 164:1468–1476

    Article  PubMed  CAS  Google Scholar 

  115. Pérez-Gómez A, Bleymehl K, Stein B et al (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1–7

    Article  CAS  Google Scholar 

  116. Smith WA, Butler AJL, Hazell LA et al (2004) Fel d 4, a cat lipocalin allergen. Clin Exp Allergy 34:1732–1738

    Article  PubMed  CAS  Google Scholar 

  117. Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic Press, Boston, USA

    Google Scholar 

  118. Potter SM, Zheng C, Koos DS et al (2001) Structure and emergence of specific olfactory glomeruli in the mouse. J Neurosci 21:9713–9723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Papes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Papes, F., Nakahara, T.S., Camargo, A.P. (2018). Behavioral Assays in the Study of Olfaction: A Practical Guide. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics