Skip to main content

In Vivo Two-Photon Imaging of the Olfactory System in Insects

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

Abstract

This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with some additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser-scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, followed by a short description of pioneering applications of this imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. https://doi.org/10.1126/science.2321027

    Article  PubMed  CAS  Google Scholar 

  2. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. https://doi.org/10.1016/j.neuron.2006.05.019

    Article  PubMed  CAS  Google Scholar 

  3. Lieke EE (1993) Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees. Eur J Neurosci 5:49–55. https://doi.org/10.1111/j.1460-9568.1993.tb00204.x

    Article  PubMed  CAS  Google Scholar 

  4. Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288. https://doi.org/10.1038/387285a0

    Article  CAS  Google Scholar 

  5. Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478. https://doi.org/10.1038/8144

    Article  PubMed  CAS  Google Scholar 

  6. Wang JW, Wong AM, Flores J et al (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  CAS  PubMed  Google Scholar 

  7. Haase A, Rigosi E, Trona F et al (2010) In-vivo two-photon imaging of the honey bee antennal lobe. Biomed Opt Express 2:131–138. https://doi.org/10.1364/BOE.1.000131

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moreaux L, Laurent G (2007) Estimating firing rates from calcium signals in locust projection neurons in vivo. Front Neural Circuits 1:2. https://doi.org/10.3389/neuro.04.002.2007

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ruchty M, Helmchen F, Wehner R, Kleineidam CJ (2010) Representation of thermal information in the antennal lobe of leaf-cutting ants. Front Behav Neurosci 4:174. https://doi.org/10.3389/fnbeh.2010.00174

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brandstaetter AS, Kleineidam CJ (2011) Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J Neurophysiol 106:2437–2449. https://doi.org/10.1152/jn.01106.2010

    Article  PubMed  Google Scholar 

  11. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. https://doi.org/10.1038/nbt899

    Article  PubMed  CAS  Google Scholar 

  12. Duemani Reddy G, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11:713–720. https://doi.org/10.1038/nn.2116

    Article  PubMed  CAS  Google Scholar 

  13. Maurer C, Jesacher A, Bernet S, Ritsch-Marte M (2011) What spatial light modulators can do for optical microscopy. Laser Photon Rev 5:81–101. https://doi.org/10.1002/lpor.200900047

    Article  Google Scholar 

  14. Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5. https://doi.org/10.3389/neuro.04.005.2008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zochowski M, Wachowiak M, Falk CX et al (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21

    Article  CAS  PubMed  Google Scholar 

  16. Yan P, Acker CD, Zhou W-LW-L et al (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci 109:1–6. https://doi.org/10.1073/pnas.1214850109

    Article  Google Scholar 

  17. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    Article  CAS  PubMed  Google Scholar 

  18. Paredes RM, Etzler JC, Watts LT et al (2008) Chemical calcium indicators. Methods 46:143–151. https://doi.org/10.1016/j.ymeth.2008.09.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mütze J, Iyer V, MacKlin JJ et al (2012) Excitation spectra and brightness optimization of two-photon excited probes. Biophys J 102:934–944. https://doi.org/10.1016/j.bpj.2011.12.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xu C, Zipfel WR, Shear JB et al (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 93:10763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galizia CG, Joerges J, Küttner A et al (1997) A semi-in-vivo preparation for optical recording of the insect brain. J Neurosci Methods 76:61–69. https://doi.org/10.1016/S0165-0270(97)00080-0

    Article  PubMed  CAS  Google Scholar 

  22. Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117

    Article  PubMed  Google Scholar 

  23. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440

    CAS  PubMed  Google Scholar 

  24. Franke T (2009) In vivo 2-photon calcium imaging of olfactory interneurons in the honeybee antennal lobe. Dissertation, Freie Universität, Berlin

    Google Scholar 

  25. Haase A (2011) Simultaneous morphological and functional imaging of the honeybee’s brain by two-photon microscopy. Nuovo Cim C 34:1–10. https://doi.org/10.1393/ncc/i2011-10960-4

    Article  Google Scholar 

  26. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J Cell Physiol 59:223–239. https://doi.org/10.1002/JCP.1030590302

    Article  CAS  Google Scholar 

  27. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  28. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905. https://doi.org/10.1038/nmeth819

    Article  PubMed  CAS  Google Scholar 

  29. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. https://doi.org/10.1038/42264

    Article  PubMed  CAS  Google Scholar 

  30. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141. https://doi.org/10.1038/84397

    Article  PubMed  CAS  Google Scholar 

  31. Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741. https://doi.org/10.1016/S0896-6273(00)80955-1

    Article  PubMed  CAS  Google Scholar 

  32. Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318

    Article  CAS  PubMed  Google Scholar 

  33. Webster N, Jin JR, Green S et al (1988) The yeast UASG is a transcriptional enhancer in human HeLa cells in the presence of the GAL4 trans-activator. Cell 52:169–178

    Article  CAS  PubMed  Google Scholar 

  34. Reiff DF (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778. https://doi.org/10.1523/JNEUROSCI.4900-04.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411. https://doi.org/10.1523/JNEUROSCI.1038-08.2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Jin L, Han Z, Platisa J et al (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–785. https://doi.org/10.1016/j.neuron.2012.06.040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Murata Y, Iwasaki H, Sasaki M et al (2005) Phosphoinositide phosphatase activity couple to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  CAS  PubMed  Google Scholar 

  38. Cao G, Platisa J, Pieribone VA et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913. https://doi.org/10.1016/j.cell.2013.07.027

    Article  PubMed  CAS  Google Scholar 

  39. Strauch M, Lüdke A, Münch D et al (2014) More than apples and oranges - detecting cancer with a fruit fly’s antenna. Sci Rep 4:1–9. https://doi.org/10.1038/srep03576

    Article  Google Scholar 

  40. Szyszka P, Demmler C, Oemisch M et al (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31:7229–7239. https://doi.org/10.1523/JNEUROSCI.6668-10.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Paoli M, Andrione M, Haase A (2017) Imaging techniques in insects. In: Rogers LJ, Vallortigara G (eds) Lateralized brain functions: methods in human and non-human species. Springer, New York, NY, pp 471–519

    Chapter  Google Scholar 

  42. Paoli M, Anesi A, Antolini R et al (2016) Differential odour coding of isotopomers in the honeybee brain. Sci Rep 6:21893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raiser G, Galizia CG, Szyszka P (2017) A high-bandwidth dual-channel olfactory stimulator for studying temporal sensitivity of olfactory processing. Chem Senses 42:141–151. https://doi.org/10.1093/chemse/bjw114

    Article  PubMed  Google Scholar 

  44. Galizia CG, Nägler K, Hölldobler B, Menzel R (1998) Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur J Neurosci 10:2964–2974. https://doi.org/10.1111/j.1460-9568.1998.00303.x

    Article  PubMed  CAS  Google Scholar 

  45. Galizia GC, Vetter RS (2004) Methods in insect sensory neuroscience. CRC press, Boca Raton, FL

    Google Scholar 

  46. Rigosi E, Frasnelli E, Vinegoni C et al (2011) Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: a morphological and behavioural study. Behav Brain Res 221:290–294. https://doi.org/10.1016/j.bbr.2011.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stökl J, Strutz A, Dafni A et al (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852. https://doi.org/10.1016/j.cub.2010.09.033

    Article  PubMed  CAS  Google Scholar 

  48. Silbering AF, Bell R, Galizia CG, Benton R (2012) Calcium imaging of odor-evoked responses in the Drosophila antennal lobe. J Vis Exp:1–10. https://doi.org/10.3791/2976

  49. Strauch M, Rein J, Lutz C, Galizia CG (2013) Signal extraction from movies of honeybee brain activity: the ImageBee plugin for KNIME. BMC Bioinformatics 14:S4. https://doi.org/10.1186/1471-2105-14-S18-S4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rigosi E, Haase A, Rath L et al (2015) Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain. Proc R Soc B Biol Sci 282:20142571–20142571. https://doi.org/10.1098/rspb.2014.2571

    Article  Google Scholar 

  51. Paoli M, Weisz N, Antolini R, Haase A (2016) Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe. Eur J Neurosci 44:2387–2395. https://doi.org/10.1111/ejn.13344

    Article  PubMed  Google Scholar 

  52. Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 190:21–38. https://doi.org/10.1007/s00359-003-0469-0

    Article  CAS  Google Scholar 

  53. Wacker M, Witte H (2013) Time-frequency techniques in biomedical signal analysis. Methods Inf Med 52:279–296. https://doi.org/10.3414/ME12-01-0083

    Article  PubMed  CAS  Google Scholar 

  54. Laurent G (2002) Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci 3:884–895. https://doi.org/10.1038/nrn964

    Article  PubMed  CAS  Google Scholar 

  55. Grabe V, Strutz A, Baschwitz A et al (2015) Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J Comp Neurol 523:530–544. https://doi.org/10.1002/cne.23697

    Article  PubMed  CAS  Google Scholar 

  56. Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol Chapter 21:Unit 21.4. https://doi.org/10.1002/0471143030.cb2104s27

  57. Soboleski MR, Oaks J, Halford WP (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19:440–442. https://doi.org/10.1096/fj.04-3180fje

    Article  PubMed  CAS  Google Scholar 

  58. Horsfield AP, Haase A, Turin L (2017) Molecular recognition in olfaction. Adv Phys 2(3):937. https://doi.org/10.1080/23746149.2017.1378594

    Article  Google Scholar 

  59. Paoli M, Münch D, Haase A et al (2017) Minute impurities contribute significantly to olfactory receptor ligand studies: tales from testing the vibration theory. eNeuro 4:ENEURO.0070-17.2017. https://doi.org/10.1523/ENEURO.0070-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  60. Andrione M, Vallortigara G, Antolini R, Haase A (2016) Neonicotinoid-induced impairment of odour coding in the honeybee. Sci Rep 6:38110. https://doi.org/10.1038/srep38110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Frasnelli E, Haase A, Rigosi E et al (2014) The bee as a model to investigate brain and behavioural asymmetries. Insects 5:120–138. https://doi.org/10.3390/insects5010120

    Article  PubMed  PubMed Central  Google Scholar 

  62. Andrione M, Timberlake BF, Vallortigara G et al (2017) Morpho-functional experience-dependent plasticity in the honeybee brain. Learn Mem 24:622

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ng M, Roorda RD, Lima SQ et al (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474. https://doi.org/10.1016/S0896-6273(02)00975-3

    Article  PubMed  CAS  Google Scholar 

  64. Wang Y, Guo H, Pologruto TA et al (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514. https://doi.org/10.1523/JNEUROSCI.3727-03.2004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Williams DW, Truman JW (2005) Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132:3631–3642. https://doi.org/10.1242/dev.01928

    Article  PubMed  CAS  Google Scholar 

  66. Rabinovich D, Mayseless O, Schuldiner O (2015) Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 9:327. https://doi.org/10.3389/fncel.2015.00327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Pech U, Revelo NH, Seitz KJ et al (2015) Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 10:2083–2095. https://doi.org/10.1016/j.celrep.2015.02.065

    Article  PubMed  CAS  Google Scholar 

  68. Sachse S, Rueckert E, Keller A et al (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56:838–850. https://doi.org/10.1016/j.neuron.2007.10.035

    Article  PubMed  CAS  Google Scholar 

  69. Fahrni CJ (2009) Fluorescent probes for two-photon excitation microscopy. Springer, New York, NY, pp 249–269

    Google Scholar 

  70. Chen H, Wang H, Slipchenko MN et al (2009) A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt Express 17:1282–1290

    Article  CAS  PubMed  Google Scholar 

  71. Driscoll JD, Shih AY, Iyengar S et al (2011) Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J Neurophysiol 105:3106–3113. https://doi.org/10.1152/jn.00649.2010

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ouzounov DG, Wang T, Wang M et al (2017) In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Methods 14:388–390. https://doi.org/10.1038/nmeth.4183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Tao X, Lin H-H, Lam T et al (2017) Transcutical imaging with cellular and subcellular resolution. Biomed Opt Express 8:1277–1289. https://doi.org/10.1364/BOE.8.001277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Xu C, Wise FW (2013) Recent advances in fibre lasers for nonlinear microscopy. Nat Photonics 7:875–882. https://doi.org/10.1038/nphoton.2013.284

    Article  CAS  Google Scholar 

  75. Haase A, Rigosi E, Frasnelli E et al (2011) A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. Eur Biophys J 40:1247–1258. https://doi.org/10.1007/s00249-011-0748-6

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bestvater F, Spiess E, Stobrawa G et al (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115. https://doi.org/10.1046/j.1365-2818.2002.01074.x

    Article  CAS  PubMed  Google Scholar 

  77. M a A, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Optics 37:7352–7356. https://doi.org/10.1364/AO.37.007352

  78. Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738. https://doi.org/10.1016/S0006-3495(04)74241-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fisher JAN, Salzberg BM, Yodh AG (2005) Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. Methods 148:94–102. https://doi.org/10.1016/j.jneumeth.2005.06.027

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Haase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Paoli, M., Haase, A. (2018). In Vivo Two-Photon Imaging of the Olfactory System in Insects. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics