Skip to main content

Odor-Induced Electrical and Calcium Signals from Olfactory Sensory Neurons In Situ

  • Protocol
  • First Online:
Olfactory Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

  • 1282 Accesses

Abstract

Electrophysiological recording and optical imaging enable the characterization of membrane and odorant response properties of olfactory sensory neurons (OSNs) in the nasal neuroepithelium. Here we describe a method to record the responses of mammalian OSNs to odorant stimulations in an ex vivo preparation of intact olfactory epithelium. The responses of individual OSNs with defined odorant receptor types can be monitored via patch-clamp recording or calcium imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma M, Chen WR, Shepherd GM (1999) Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation. J Neurosci Methods 92(1-2):31–40. https://doi.org/10.1016/S0165-0270(99)00089-8

    Article  PubMed  CAS  Google Scholar 

  2. Connelly T, Yu Y, Grosmaitre X, Wang J, Santarelli LC, Savigner A, Qiao X, Wang Z, Storm DR, Ma M (2015) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci U S A 112(2):590–595. https://doi.org/10.1073/pnas.1418515112

    Article  PubMed  CAS  Google Scholar 

  3. Tazir B, Khan M, Mombaerts P, Grosmaitre X (2016) The extremely broad odorant response profile of mouse olfactory sensory neurons expressing the odorant receptor MOR256-17 includes trace amine-associated receptor ligands. Eur J Neurosci 43(5):608–617. https://doi.org/10.1111/ejn.13153

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grosmaitre X, Fuss SH, Lee AC, Adipietro KA, Matsunami H, Mombaerts P, Ma M (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29(46):14545–14552. https://doi.org/10.1523/JNEUROSCI.2752-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Grosmaitre X, Vassalli A, Mombaerts P, Shepherd GM, Ma M (2006) Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc Natl Acad Sci U S A 103(6):1970–1975. https://doi.org/10.1073/pnas.0508491103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nguyen MQ, Zhou Z, Marks CA, Ryba NJ, Belluscio L (2007) Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131(5):1009–1017. https://doi.org/10.1016/j.cell.2007.10.050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhang J, Huang G, Dewan A, Feinstein P, Bozza T (2012) Uncoupling stimulus specificity and glomerular position in the mouse olfactory system. Mol Cell Neurosci 51(3-4):79–88. https://doi.org/10.1016/j.mcn.2012.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239. https://doi.org/10.1523/JNEUROSCI.4299-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lam RS, Mombaerts P (2013) Odorant responsiveness of embryonic mouse olfactory sensory neurons expressing the odorant receptors S1 or MOR23. Eur J Neurosci 38(2):2210–2217. https://doi.org/10.1111/ejn.12240

    Article  PubMed  Google Scholar 

  10. Lee AC, Tian H, Grosmaitre X, Ma M (2009) Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice. Chem Senses 34(8):695–703. https://doi.org/10.1093/chemse/bjp056

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cadiou H, Aoude I, Tazir B, Molinas A, Fenech C, Meunier N, Grosmaitre X (2014) Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level. J Neurosci 34(14):4857–4870. https://doi.org/10.1523/JNEUROSCI.0688-13.2014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Riviere S, Soubeyre V, Jarriault D, Molinas A, Leger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X (2016) High fructose diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 6:34011. https://doi.org/10.1038/srep34011

  13. Ma M, Shepherd GM (2000) Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 97(23):12869–12874. https://doi.org/10.1073/pnas.220301797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957. https://doi.org/10.1126/science.1144233

    Article  PubMed  CAS  Google Scholar 

  15. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104(36):14507–14512. https://doi.org/10.1073/pnas.0704965104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Li J, Ishii T, Feinstein P, Mombaerts P (2004) Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428(6981):393–399. https://doi.org/10.1038/nature02433

    Article  PubMed  CAS  Google Scholar 

  17. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958. https://doi.org/10.1016/j.neuron.2015.02.022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

M.M. is supported by the National Institute of Deafness and Other Communication Disorders, National Institute of Health (R01DC006213) and the National Science Foundation (1515930). X.G. is supported by CNRS (ATIP and ATIP-Plus grant), the Conseil Régional Bourgogne-Franche-Comté (PARI grant) and the FEDER (European Funding for Regional Economical Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grosmaitre, X., Ma, M. (2018). Odor-Induced Electrical and Calcium Signals from Olfactory Sensory Neurons In Situ. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics