Skip to main content

CD36 Neuronal Identity in the Olfactory Epithelium

  • Protocol
  • First Online:
  • 1373 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1820))

Abstract

CD36 scavenger receptor is expressed in a subpopulation of olfactory sensory neurons (OSNs). These neurons express canonical olfactory signaling machinery; however, not all odorant receptors (ORs) are coexpressed with CD36. In situ hybridization (ISH) enables the detection of nucleic acids in tissues, cells, or isolated chromosomes. The development of nonradioactive and stable labeling probes almost 30 years ago, allowed to routinely perform this technique employing different labeling strategies in one experiment. ISH is widely used in the field of neurobiology of the sense of smell, providing valuable neuroanatomical information regarding the molecular organization of the olfactory epithelium (OE). Here we show a method for studying CD36+-OSNs and provide a detailed protocol for chromogenic ISH, one- or two-color fluorescent ISH, which can be combined with immunofluorescence and are suitable for Cd36 mRNA probing simultaneous to other transcripts and/or proteins labeling.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nat Publ Gr 223:582–587

    Article  CAS  Google Scholar 

  3. Moench TR (1987) In situ hybridization

    Article  PubMed  CAS  Google Scholar 

  4. Xiao S, Renshaw A, Cibas ES et al (1995) Novel fluorescence in situ hybridization approaches in solid tumors. Characterization of frozen specimens, touch preparations, and cytological preparations. Am J Pathol 147:896–904

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Touhara K (2001) Functional cloning and reconstitution of vertebrate odorant receptors. Life Sci 68:2199–2206

    Article  PubMed  CAS  Google Scholar 

  6. Ihara S, Yoshikawa K, Touhara K (2013) Chemosensory signals and their receptors in the olfactory neural system. Neuroscience 254:45–60

    Article  PubMed  CAS  Google Scholar 

  7. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  8. Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  PubMed  CAS  Google Scholar 

  9. Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  PubMed  Google Scholar 

  10. Sakano H (2010) Review neural map formation in the mouse olfactory system. Neuron 67:530–542

    Article  PubMed  CAS  Google Scholar 

  11. Serizawa S, Ishii T, Nakatani H et al (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3:687–693

    Article  PubMed  CAS  Google Scholar 

  12. Hanchate NK, Kondoh K, Lu Z et al (2015) Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 80(350):1251–1255

    Article  CAS  Google Scholar 

  13. Oberland S, Ackels T, Gaab S et al (2015) CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci 9:366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lee S, Eguchi A, Tsuzuki S et al (2015) Expression of CD36 by olfactory receptor cells and its abundance on the epithelial surface in mice. PLoS One 10

    Google Scholar 

  15. Xavier AM, Ludwig RG, Nagai MH et al (2016) CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium. Sci Rep 6:VN-re:25507

    Article  PubMed  CAS  Google Scholar 

  16. Omura M, Mombaerts P (2015) Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci 65:114–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Greer PL, Bear DM, Lassance JM et al (2016) A family of non-GPCR Chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    Article  CAS  PubMed  Google Scholar 

  19. Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang J, Pacifico R, Cawley D et al (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33:3228–3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dewan A, Pacifico R, Zhan R et al (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Ishii T, Omura M, Mombaerts P (2005) Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J Neurocytol 33:657–669

    Article  CAS  Google Scholar 

  24. Ingham P, Conlon R, Rosen B et al (1999) In situ hybridization: a practical approach. Oxford University Press, New York

    Google Scholar 

  25. Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100:431–440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants FAPESP 2007/53732-8 and CEPID FAPESP grant 2013/07937-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaias Glezer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xavier, A.M., Glezer, I. (2018). CD36 Neuronal Identity in the Olfactory Epithelium. In: Simoes de Souza, F., Antunes, G. (eds) Olfactory Receptors. Methods in Molecular Biology, vol 1820. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8609-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8609-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8608-8

  • Online ISBN: 978-1-4939-8609-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics