Skip to main content

Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment

  • Protocol
  • First Online:
Epithelial Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1817))

Abstract

The interaction between the receptor, programmed cell death protein 1 (PD-1) and ligand, programmed cell death 1 (PD-L1) is known to inhibit CD8+ cytotoxic T lymphocyte proliferation, survival, and effector function. The result of this interaction leads to evasion of immune surveillance by tumors and subsequently cancer cell proliferation. Immunotherapy via PD-L1 blockade is used for a variety of malignancies, yet the prognostic value of immune checkpoint inhibition for the treatment of gastric cancer remains controversial. Thus, preclinical models that would predict the efficacy of such therapy in a subgroup of gastric cancer patients would be an advancement in the personalized treatment of this disease. Three-dimensional organoid cultures have not only been used to investigate the mechanisms regulating development and disease, but have also been used for high-throughput drug screening for targeted personalized therapy. Here we present the methodology for the co-culture of mouse-derived gastric cancer organoids with autologous immune cells specifically for the study of PD-L1/PD-1 interactions within the tumor microenvironment in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanca PM, Epplein M, Correa P (2010) Gastric cancer: an infectious disease. Infect Dis Clin N Am 24(4):853–869

    Article  Google Scholar 

  2. Neugut AI, Hayek M, Howe G (1996) Epidemiology of gastric cancer. Semin Oncol 23(3):281–291

    CAS  PubMed  Google Scholar 

  3. Rebeca S, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63:11–30

    Article  Google Scholar 

  4. Ahmad SA, Xia BT, Bailey CE, Abbott DE, Helmink BA, Daly MC, Thota R et al (2016) An update on gastric cancer. Curr Probl Surg 53(10):449–490

    Article  PubMed  Google Scholar 

  5. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn Y-H, Byers LA, Zhang X et al (2014) Metastasis is regulated via microRNA-200/ZEB1 axis control of tumor cell PD-L1 expression and intratumoral immunosuppression. Nat Commun 5:5241

    Article  PubMed  CAS  Google Scholar 

  7. Reissfelder C, Stamova S, Gossmann C, Braun M, Bonertz A, Walliczek U, Grimm M, Rahbari NN, Koch M, Saadati M, Benner A (2015) Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J Clin Invest 125(2):739

    Article  PubMed  Google Scholar 

  8. Davies M (2014) New modalities of cancer treatment for NSCLC: focus on immunotherapy. Cancer Manag Res 6:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kyi C, Postow MA (2014) Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 588(2):368–376

    Article  PubMed  CAS  Google Scholar 

  10. Raufi AG, Klempner SJ (2015) Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol 6(5):561

    PubMed  PubMed Central  Google Scholar 

  11. Hou J, Zhong Y, Xiang R, Li C, Wang L, Chen S, Li Q, Chen M, Wang L (2014) Correlation between infiltration of FOXP3+ regulatory T cells and expression of B7-H1 in the tumor tissues of gastric cancer. Exp Mol Pathol 96(3):284–291

    Article  PubMed  CAS  Google Scholar 

  12. Wu C, Zhu Y, Jiang J, Zhao J, Zhang X-G, Ning X (2006) Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 108(1):19–24

    Article  PubMed  Google Scholar 

  13. Qing Y, Li Q, Ren T, Xia W, Peng Y, Liu G-L, Luo H et al (2015) Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des Devel Ther 9:901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schumacher MA, Aihara E, Feng R, Engevik A, Shroyer NF, Ottemann KM, Worrell RT, Montrose MH, Shivdasani RA, Zavros Y (2015) The use of murine-derived fundic organoids in studies of gastric physiology (2015). J Physiol 593(8):1809–1827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Syu LJ, Zhao X, Zhang Y, Grachtchouk M, Demitrack E, Ermilov A, Wilbert DM, Zheng X, Kaatz A, Greenson JK, Gumucio DL (2016) Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways. Oncotarget 7(9):10255

    Article  PubMed  PubMed Central  Google Scholar 

  17. Madaan A, Verma R, Singh AT, Jain SK, Jaggi M (2014) A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells. J Biol Methods 1(1):e1. https://doi.org/10.14440/jbm.2014.12

    Article  Google Scholar 

  18. Dorrington M (2011) Harvesting of femurs and tibia from mice. Bowdish Lab, McMaster University, Hamilton

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by NIH 5R01DK083402-08 (Zavros) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Zavros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakrabarti, J. et al. (2018). Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment. In: Baratta, M. (eds) Epithelial Cell Culture. Methods in Molecular Biology, vol 1817. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8600-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8600-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8599-9

  • Online ISBN: 978-1-4939-8600-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics