Skip to main content

Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Abstract

Several animal models have been developed to study atherosclerosis. Here we present a rabbit atherosclerosis model generated by surgical denudation of the aortic endothelium in combination with a high-fat and cholesterol-enriched diet. This model is characterized by the formation of vascular lesions that exhibit several hallmarks of human atherosclerosis. Due to the rabbit’s relative large size, as compared to rodents, this model is suited for the imaging-guided evaluation of novel therapeutic strategies using clinical scanners. In this chapter, we present an extensive outline of the procedures to induce aortic atherosclerotic lesions in rabbits as well as methods to evaluate the disease, including noninvasive in vivo multiparametric imaging and histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. https://doi.org/10.1056/NEJMra043430

    Article  PubMed  CAS  Google Scholar 

  2. Bentzon JF, Falk E (2010) Atherosclerotic lesions in mouse and man: is it the same disease? Curr Opin Lipidol 21:434–440. https://doi.org/10.1097/MOL.0b013e32833ded6a

    Article  PubMed  CAS  Google Scholar 

  3. Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47((8):C13–C18. https://doi.org/10.1016/j.jacc.2005.10.065

    Article  CAS  Google Scholar 

  4. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34(10):719–728. https://doi.org/10.1093/eurheartj/ehs411

    Article  PubMed  CAS  Google Scholar 

  5. Bocan TMA, Mueller SB, Mazur MJ, Uhlendorf PD, Brown EQ, Kieft KA (1993) The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation. Atherosclerosis 102:9–22

    Article  CAS  PubMed  Google Scholar 

  6. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8 Suppl):C7–C12. https://doi.org/10.1016/j.jacc.2005.09.068

    Article  PubMed  CAS  Google Scholar 

  7. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. https://doi.org/10.1016/j.jacc.2007.03.044

    Article  PubMed  Google Scholar 

  8. Mateo J, Izquierdo-Garcia D, Badimon JJ, Fayad ZA, Fuster V (2014) Noninvasive assessment of hypoxia in rabbit advanced atherosclerosis using 18f-fluoromisonidazole positron emission tomographic imaging. Circ Cardiovasc Imaging 7(2):312–320. https://doi.org/10.1161/CIRCIMAGING.113.001084

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tarkin JM, Dweck MR, Evans NR, Takx RAP, Brown AJ, Tawakol A, Fayad ZA, Rudd JHF (2016) Imaging atherosclerosis. Circ Res 118(4):750–769. https://doi.org/10.1161/CIRCRESAHA.115.306247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lobatto ME, Z a F, Silvera S, Vucic E, Calcagno C, Mani V, Dickson SD, Nicolay K, Banciu M, Schiffelers RM, Metselaar JM, Van Bloois L, Wu H-S, Fallon JT, Rudd JH, Fuster V, E a F, Storm G, Mulder WJM (2010) Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 7(6):2020–2029. https://doi.org/10.1021/mp100309y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Calcagno C, Lobatto ME, Dyvorne H, Robson PM, Millon A, Senders ML, Lairez O, Ramachandran S, Coolen BF, Black A, Mulder WJM, Fayad ZA (2015) Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR Biomed 28(10):1304–1314. https://doi.org/10.1002/nbm.3369

    Article  PubMed  PubMed Central  Google Scholar 

  12. Keliher EJ, Ye Y, Wojtkiewicz GR, Aguirre AD, Tricot B, Senders ML, Groenen H, Fay F, Perez-Medina C, Calcagno C, Carlucci G, Reiner T, Sun Y, Courties G, Iwamoto Y, Kim H, Wang C, Chen JW, Swirski FK, Wey H, Hooker J, Fayad ZA, Mulder WJM, Weissleder R, Nahrendorf M (2017) Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nat Commun 8:14064. https://doi.org/10.1038/ncomms14064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103(3):415–422. https://doi.org/10.1161/01.CIR.103.3.415

    Article  PubMed  CAS  Google Scholar 

  14. Tang TY, Howarth SPS, Miller SR, Graves MJ, Patterson AJ, U-King-Im JM, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zalewski A, Gillard JH (2009) The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53(22):2039–2050. https://doi.org/10.1016/j.jacc.2009.03.018

    Article  PubMed  CAS  Google Scholar 

  15. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, Muller JE, Brady TJFA (2005) Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 12(3):294–301. https://doi.org/10.1016/j.nuclcard.2005.03.002

    Article  PubMed  Google Scholar 

  16. Vucic E, Dickson SD, Calcagno C, Rudd JHF, Moshier E, Hayashi K, Mounessa JS, Roytman M, Moon MJ, Lin J, Tsimikas S, Fisher EA, Nicolay K, Fuster V, Fayad ZA (2009) Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC Cardiovasc Imaging 4(10):1100–1109. https://doi.org/10.1016/j.jcmg.2011.04.020

    Article  Google Scholar 

  17. Ye Y, Calcagno C, Binderup T, Courties G, Keliher E, Wojtkiewicz GR, Iwamoto Y, Tang J, Perez-Medina C, Mani V, Ishino S, Johnbeck CB, Knigge U, Fayad ZA, Libby P, Weissleder R, Tawakol A, Dubey S, Belanger AP, Di Carli MF, Swirski FK, Kjær A, Mulder W, Nahrendorf M (2015) Imaging macrophage and hematopoietic progenitor proliferation in atherosclerosis. Circ Res 117(10):835–845. https://doi.org/10.1161/CIRCRESAHA.115.307024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, Yeoh SE, Wallace W, Salter D, Fletcher AM, Van Beek EJR, Flapan AD, Uren NG, Behan MWH, Cruden NLM, Mills NL, Fox KAA, Rudd JHF, Dweck MR, Newby DE (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713. https://doi.org/10.1016/S0140-6736(13)61754-7

    Article  PubMed  Google Scholar 

  19. Irkle A, Vesey AT, Lewis DY, Skepper JN, Bird JLE, Dweck MR, Joshi FR, Gallagher FA, Warburton EA, Bennett MR, Brindle KM, Newby DE, Rudd JH, Davenport AP (2015) Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat Commun 6:7495. https://doi.org/10.1038/ncomms8495

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dweck MR, Chow MWL, Joshi NV, Williams MC, Jones C, Fletcher AM, Richardson H, White A, McKillop G, van Beek EJR, Boon NA, Rudd JHF, Newby DE (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59(17):1539–1548. https://doi.org/10.1016/j.jacc.2011.12.037

    Article  PubMed  CAS  Google Scholar 

  21. Calcagno C, Mani V, Ramachandran S, Fayad ZA (2010) Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis 13(2):87–99. https://doi.org/10.1007/s10456-010-9172-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of the large animal unit of the Center for Comparative Medicine and Surgery at the Icahn School of Medicine at Mount Sinai for their continual excellent technical support with this model. We also would like to thank René-Paul Lafarie for the great pictures of the angioplasty procedure. Histology images presented here were performed at the Microscopy Core at Icahn School of Medicine at Mount Sinai. PET/MR imaging was performed at the TMII Imaging Core at Icahn School of Medicine at Mount Sinai.

All experiments presented in this chapter were performed in accordance with protocols approved by the Radiation Safety Committee and the Institutional Animal Care and Use Committee of the Icahn School of Medicine at Mount Sinai and followed National Institutes of Health guidelines for animal welfare. Some of the artworks present in Fig. 1 are adapted from Servier Medical Art and used under a Creative Commons Attribution 3.0 Unported License.

Funding

This research was supported by “De Drie Lichten” Foundation in The Netherlands (M.L.S.), the American Heart Association 17PRE33660729 (M.L.S.), the National Heart, Lung, and Blood Institute (NHLBI), and the National Institutes of Health (NIH), as a Program of Excellence in Nanotechnology (PEN) Award, Contract #HHSN268201000045C, NIH/NIBIB R01 EB009638 (Z.A.F.), Harold S. Geneen Charitable Trust Award (Z.A.F.), R01 HL125703 (W.J.M.M.), NWO Vidi 91713324 (W.J.M.M.), and PSC-CUNY (F.F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Fay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Senders, M.L. et al. (2018). Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics