Skip to main content

Canine Model of Pacing-Induced Heart Failure

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

Tachypacing-induced heart failure is a well-established large animal model that recapitulates numerous pathophysiological, structural and molecular features of dilated cardiomyopathy and, more in general, of end-stage congestive heart failure. The left or the right ventricle is instrumented with pacing electrodes to impose supernormal heart rates, usually three times higher than baseline values, for a length of time that typically ranges between 3 and 5 weeks. The animal of choice is the dog, although this protocol has been successfully implemented also in pigs, sheep, and rabbits. This chapter provides detailed methodology and description of the dog model utilized in our laboratory, which is one of the variants described in literature. Chronic instrumentation is completed by adding probes and catheters necessary to obtain measures of cardiac function and hemodynamics and to withdraw blood samples from various vascular districts. The progression from compensated to decompensated heart failure is highly reproducible, therefore, due also to the phylogenetic proximity of dogs to humans, tachypacing-induced heart failure is considered a highly clinically relevant model for testing the efficacy of novel pharmacological and nonpharmacological therapeutic agents. This model typically produces heart failure as defined by an LV dP/dt max <1500 mmHg/s, end-diastolic pressure >25 mmHg, mean arterial pressure <85 mmHg, and an ejection fraction <35%. One can expect a mortality rate of 5–10% due to fatal arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whipple GHSLT, Woodman EG, Theophilis C, Friedman S (1962) Reversible congestive heart failure due to chronic rapid stimulation of the normal heart. Proc N Engl Cardiovasc Soc 20:39–40

    Google Scholar 

  2. Recchia FA, Lionetti V (2007) Animal models of dilated cardiomyopathy for translational research. Vet Res Commun 31(Suppl 1):35–41. https://doi.org/10.1007/s11259-007-0005-8

    Article  PubMed  Google Scholar 

  3. Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2(3):262–271. https://doi.org/10.1161/CIRCHEARTFAILURE.108.814459

    Article  PubMed  PubMed Central  Google Scholar 

  4. Riegger AJ, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci (Lond) 62(5):465–469

    Article  CAS  Google Scholar 

  5. Wang W, Chen JS, Zucker IH (1991) Carotid sinus baroreceptor reflex in dogs with experimental heart failure. Circ Res 68(5):1294–1301

    Article  CAS  PubMed  Google Scholar 

  6. Shannon RP, Komamura K, Stambler BS, Bigaud M, Manders WT, Vatner SF (1991) Alterations in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am J Physiol 260(6 Pt 2):H1903–H1911. https://doi.org/10.1152/ajpheart.1991.260.6.H1903

    Article  PubMed  CAS  Google Scholar 

  7. Komamura K, Shannon RP, Pasipoularides A, Ihara T, Lader AS, Patrick TA, Bishop SP, Vatner SF (1992) Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. J Clin Invest 89(6):1825–1838. https://doi.org/10.1172/JCI115787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. O'Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84(5):562–570

    Article  CAS  PubMed  Google Scholar 

  9. Smith CJ, Huang R, Sun D, Ricketts S, Hoegler C, Ding JZ, Moggio RA, Hintze TH (1997) Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation 96(9):3116–3123

    Article  CAS  PubMed  Google Scholar 

  10. Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE (1993) Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91(3):907–914. https://doi.org/10.1172/JCI116312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kirk JA, Chakir K, Lee KH, Karst E, Holewinski RJ, Pironti G, Tunin RS, Pozios I, Abraham TP, de Tombe P, Rockman HA, Van Eyk JE, Craig R, Farazi TG, Kass DA (2015) Pacemaker-induced transient asynchrony suppresses heart failure progression. Sci Transl Med 7(319):319ra207. https://doi.org/10.1126/scitranslmed.aad2899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Traverse JH, Chen Y, Hou M, Li Y, Bache RJ (2007) Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure. Circ Res 100(11):1643–1649. https://doi.org/10.1161/CIRCRESAHA.107.150219

    Article  PubMed  CAS  Google Scholar 

  13. Morimoto A, Hasegawa H, Cheng HJ, Little WC, Cheng CP (2004) Endogenous beta3-adrenoreceptor activation contributes to left ventricular and cardiomyocyte dysfunction in heart failure. Am J Physiol Heart Circ Physiol 286(6):H2425–H2433. https://doi.org/10.1152/ajpheart.01045.2003

    Article  PubMed  CAS  Google Scholar 

  14. Martelli D, Silvani A, McAllen RM, May CN, Ramchandra R (2014) The low frequency power of heart rate variability is neither a measure of cardiac sympathetic tone nor of baroreflex sensitivity. Am J Physiol Heart Circ Physiol 307(7):H1005–H1012. https://doi.org/10.1152/ajpheart.00361.2014

    Article  PubMed  CAS  Google Scholar 

  15. Lionetti V, Guiducci L, Simioniuc A, Aquaro GD, Simi C, De Marchi D, Burchielli S, Pratali L, Piacenti M, Lombardi M, Salvadori P, Pingitore A, Neglia D, Recchia FA (2007) Mismatch between uniform increase in cardiac glucose uptake and regional contractile dysfunction in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293(5):H2747–H2756. https://doi.org/10.1152/ajpheart.00592.2007

    Article  PubMed  CAS  Google Scholar 

  16. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82(4):482–495

    Article  CAS  PubMed  Google Scholar 

  17. Marcus NJ, Del Rio R, Schultz HD (2014) Reply from Noah J. Marcus, Rodrigo Del Rio and Harold D. Schultz. J Physiol 592(8):1905–1906. https://doi.org/10.1113/jphysiol.2014.273565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Harada M, Tsuji Y, Ishiguro YS, Takanari H, Okuno Y, Inden Y, Honjo H, Lee JK, Murohara T, Sakuma I, Kamiya K, Kodama I (2011) Rate-dependent shortening of action potential duration increases ventricular vulnerability in failing rabbit heart. Am J Physiol Heart Circ Physiol 300(2):H565–H573. https://doi.org/10.1152/ajpheart.00209.2010

    Article  PubMed  CAS  Google Scholar 

  19. Park M, Shen YT, Gaussin V, Heyndrickx GR, Bartunek J, Resuello RR, Natividad FF, Kitsis RN, Vatner DE, Vatner SF (2009) Apoptosis predominates in nonmyocytes in heart failure. Am J Physiol Heart Circ Physiol 297(2):H785–H791. https://doi.org/10.1152/ajpheart.00310.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rademaker MT, Cameron VA, Charles CJ, Richards AM (2005) Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure. Circulation 112(23):3624–3632. https://doi.org/10.1161/CIRCULATIONAHA.105.561308

    Article  PubMed  CAS  Google Scholar 

  21. Khatiwala JR, Everly MJ (2015) An update on cardiac transplantation in the United States based on an analysis of the UNOS registry. Clin Transpl 31:27–34

    PubMed  Google Scholar 

  22. Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, Kulczycki AM, Hurst M, Ring N, Wang T, Shaikh F, Gross P, Singh H, Kolpakov MA, Linke A, Houser SR, Rizzo V, Sabri A, Madesh M, Giacca M, Recchia FA (2015) Intracoronary Cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol 66(2):139–153. https://doi.org/10.1016/j.jacc.2015.04.071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, Ungvari Z, Puligadda U, Moimas S, Xu X, Edwards JG, Hintze TH, Giacca M, Recchia FA (2010) Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 106(12):1893–1903. https://doi.org/10.1161/CIRCRESAHA.110.220855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Simpson S, Edwards J, Emes RD, Cobb MA, Mongan NP, Rutland CS (2015) A predictive model for canine dilated cardiomyopathy-a meta-analysis of Doberman pinscher data. PeerJ 3:e842. https://doi.org/10.7717/peerj.842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kiczak L, Tomaszek A, Paslawska U, Bania J, Noszczyk-Nowak A, Skrzypczak P, Paslawski R, Zacharski M, Janiszewski A, Kuropka P, Ponikowski P, Jankowska EA (2015) Sex differences in porcine left ventricular myocardial remodeling due to right ventricular pacing. Biol Sex Differ 6:32. https://doi.org/10.1186/s13293-015-0048-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mitacchione G, Powers JC, Grifoni G, Woitek F, Lam A, Ly L, Settanni F, Makarewich CA, McCormick R, Trovato L, Houser SR, Granata R, Recchia FA (2014) The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart. Circ Heart Fail 7(4):643–651. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Recchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Powers, J.C., Recchia, F. (2018). Canine Model of Pacing-Induced Heart Failure. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics