Skip to main content

An Introduction to Computational Modeling of Cardiac Electrophysiology and Arrhythmogenicity

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

Mathematical modeling is a powerful tool to study the complex and orchestrated biological process of cardiac electrical activity. By integrating experimental data from key components of cardiac electrophysiology, systems biology simulations can complement empirical findings, provide quantitative insight into physiological and pathophysiological mechanisms of action, and guide new hypotheses to better understand this complex biological system to develop novel cardiotherapeutic approaches. In this chapter, we briefly introduce in silico methods to describe the dynamics of physiological and pathophysiological single-cell and tissue-level cardiac electrophysiology. Using a “bottom-up” approach, we first describe the basis of ion channel mathematical models. Next, we discuss how the net flux of ions through such channels leads to changes in transmembrane voltage during cardiomyocyte action potentials. By applying these fundamentals, we describe how action potentials propagate in models of cardiac tissue. In addition, we provide case studies simulating single-cell and tissue-level arrhythmogenesis, as well as promising approaches to circumvent or overcome such adverse events. Overall, basic concepts and tools are discussed in this chapter as an accessible introduction to nonmathematicians to foster an understanding of electrophysiological modeling studies and help facilitate communication with dry lab colleagues and collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang JH, Saucerman JJ (2011) Computational models reduce complexity and accelerate insight into cardiac signaling networks. Circ Res 108(1):85–97. https://doi.org/10.1161/CIRCRESAHA.110.223602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mayourian J, Ceholski DK, Gonzalez DM, Cashman TJ, Sahoo S, Hajjar RJ, Costa KD (2018) Physiologic, pathologic, and therapeutic paracrine modulation of cardiac excitation-contraction coupling. Circ Res 122(1):167–183

    Article  CAS  PubMed  Google Scholar 

  3. Mayourian J, Cashman TJ, Ceholski DK, Johnson BV, Sachs D, Kaji DA, Sahoo S, Hare JM, Hajjar RJ, Sobie EA, Costa KD (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121(4):411–423. https://doi.org/10.1161/CIRCRESAHA.117.310796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117(1):80–88. https://doi.org/10.1161/CIRCRESAHA.117.305365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Plonsey R, Barr RC (2007) Bioelectricity: a quantitative approach, 3rd edn. Springer, New York

    Google Scholar 

  6. Tong WC, Tribe RM, Smith R, Taggart MJ (2014) Computational modeling reveals key contributions of KCNQ and hERG currents to the malleability of uterine action potentials underpinning labor. PLoS One 9(12):e114034. https://doi.org/10.1371/journal.pone.0114034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307

    Article  CAS  PubMed  Google Scholar 

  8. Shoeb F, Malykhina AP, Akbarali HI (2003) Cloning and functional characterization of the smooth muscle ether-a-go-go-related gene K+ channel. Potential role of a conserved amino acid substitution in the S4 region. J Biol Chem 278(4):2503–2514. https://doi.org/10.1074/jbc.M208525200

    Article  PubMed  CAS  Google Scholar 

  9. Kupershmidt S, Snyders DJ, Raes A, Roden DM (1998) A K+ channel splice variant common in human heart lacks a C-terminal domain required for expression of rapidly activating delayed rectifier current. J Biol Chem 273(42):27231–27235

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Kehl SJ, Fedida D (2003) Modulation of human ether-a-go-go-related K+ (HERG) channel inactivation by Cs+ and K+. J Physiol 548(Pt 3):691–702. https://doi.org/10.1113/jphysiol.2003.039198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. O’Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002061. https://doi.org/10.1371/journal.pcbi.1002061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grandi E, Pasqualini FS, Bers DM (2010) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48(1):112–121. https://doi.org/10.1016/j.yjmcc.2009.09.019

    Article  PubMed  CAS  Google Scholar 

  13. ten Tusscher KH, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286(4):H1573–H1589. https://doi.org/10.1152/ajpheart.00794.2003

    Article  PubMed  Google Scholar 

  14. ten Tusscher KH, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291(3):H1088–H1100. https://doi.org/10.1152/ajpheart.00109.2006

    Article  PubMed  CAS  Google Scholar 

  15. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N (2016) The comprehensive in vitro proarrhythmia assay (CiPA) initiative – update on progress. J Pharmacol Toxicol Methods 81:15–20. https://doi.org/10.1016/j.vascn.2016.06.002

    Article  PubMed  CAS  Google Scholar 

  16. Sauer AJ, Newton-Cheh C (2012) Clinical and genetic determinants of torsade de pointes risk. Circulation 125(13):1684–1694. https://doi.org/10.1161/CIRCULATIONAHA.111.080887

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yap YG, Camm AJ (2003) Drug induced QT prolongation and Torsades de pointes. Heart 89(11):1363–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah RR (2013) Drug-induced QT interval prolongation: does ethnicity of the thorough QT study population matter? Br J Clin Pharmacol 75(2):347–358. https://doi.org/10.1111/j.1365-2125.2012.04415.x

    Article  PubMed  Google Scholar 

  19. Shah RR (2006) Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics 7(6):889–908. https://doi.org/10.2217/14622416.7.6.889

    Article  PubMed  CAS  Google Scholar 

  20. Fermini B, Hancox JC, Abi-Gerges N, Bridgland-Taylor M, Chaudhary KW, Colatsky T, Correll K, Crumb W, Damiano B, Erdemli G, Gintant G, Imredy J, Koerner J, Kramer J, Levesque P, Li Z, Lindqvist A, Obejero-Paz CA, Rampe D, Sawada K, Strauss DG, Vandenberg JI (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21(1):1–11. https://doi.org/10.1177/1087057115594589

    Article  PubMed  CAS  Google Scholar 

  21. Cavero I, Crumb W (2005) ICH S7B draft guideline on the non-clinical strategy for testing delayed cardiac repolarisation risk of drugs: a critical analysis. Expert Opin Drug Saf 4(3):509–530. https://doi.org/10.1517/14740338.4.3.509

    Article  PubMed  Google Scholar 

  22. Shah RR (2005) Drugs, QTc interval prolongation and final ICH E14 guideline: an important milestone with challenges ahead. Drug Saf 28(11):1009–1028

    Article  CAS  PubMed  Google Scholar 

  23. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58(1):32–45

    Article  CAS  PubMed  Google Scholar 

  24. Gintant G (2011) An evaluation of hERG current assay performance: translating preclinical safety studies to clinical QT prolongation. Pharmacol Ther 129(2):109–119. https://doi.org/10.1016/j.pharmthera.2010.08.008

    Article  PubMed  CAS  Google Scholar 

  25. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2(6):439–447. https://doi.org/10.1038/nrd1108

    Article  PubMed  CAS  Google Scholar 

  26. Shah RR (2002) Drug-induced prolongation of the QT interval: regulatory dilemmas and implications for approval and labelling of a new chemical entity. Fundam Clin Pharmacol 16(2):147–156

    Article  CAS  PubMed  Google Scholar 

  27. Avorn J (2015) The $2.6 billion pill--methodologic and policy considerations. N Engl J Med 372(20):1877–1879. https://doi.org/10.1056/NEJMp1500848

    Article  PubMed  CAS  Google Scholar 

  28. Gintant G, Fermini B, Stockbridge N, Strauss D (2017) The evolving roles of human iPSC-derived cardiomyocytes in drug safety and discovery. Cell Stem Cell 21(1):14–17. https://doi.org/10.1016/j.stem.2017.06.005

    Article  PubMed  CAS  Google Scholar 

  29. Lancaster MC, Sobie EA (2016) Improved prediction of drug-induced Torsades de pointes through simulations of dynamics and machine learning algorithms. Clin Pharmacol Ther 100(4):371–379. https://doi.org/10.1002/cpt.367

    Article  PubMed  CAS  Google Scholar 

  30. Karantalis V, Hare JM (2015) Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 116(8):1413–1430. https://doi.org/10.1161/CIRCRESAHA.116.303614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, Schulman S, Wu K, Shah A, Breton E, Davis-Sproul J, Schwarz R, Feigenbaum G, Mushtaq M, Suncion VY, Lardo AC, Borrello I, Mendizabal A, Karas TZ, Byrnes J, Lowery M, Heldman AW, Hare JM (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (PROMETHEUS) trial. Circ Res 114(8):1302–1310. https://doi.org/10.1161/CIRCRESAHA.114.303180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, Ghersin E, Soto V, Lopera G, Miki R, Willens H, Hendel R, Mitrani R, Pattany P, Feigenbaum G, Oskouei B, Byrnes J, Lowery MH, Sierra J, Pujol MV, Delgado C, Gonzalez PJ, Rodriguez JE, Bagno LL, Rouy D, Altman P, Foo CW, da Silva J, Anderson E, Schwarz R, Mendizabal A, Hare JM (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73. https://doi.org/10.1001/jama.2013.282909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Meyer GP, Wollert KC, Lotz J, Pirr J, Rager U, Lippolt P, Hahn A, Fichtner S, Schaefer A, Arseniev L, Ganser A, Drexler H (2009) Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. Eur Heart J 30(24):2978–2984. https://doi.org/10.1093/eurheartj/ehp374

    Article  PubMed  Google Scholar 

  34. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A (2012) Comparison of allogeneic autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379. https://doi.org/10.1001/jama.2012.25321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Marban E, Abraham MR (2006) Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113(15):1832–1841. https://doi.org/10.1161/CIRCULATIONAHA.105.593038

    Article  PubMed  Google Scholar 

  36. de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ (2014) Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv 7(2):156–167. https://doi.org/10.1161/CIRCINTERVENTIONS.113.001009

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez B, Carusi A, Abi-Gerges N, Ariga R, Britton O, Bub G, Bueno-Orovio A, Burton RA, Carapella V, Cardone-Noott L, Daniels MJ, Davies MR, Dutta S, Ghetti A, Grau V, Harmer S, Kopljar I, Lambiase P, Lu HR, Lyon A, Minchole A, Muszkiewicz A, Oster J, Paci M, Passini E, Severi S, Taggart P, Tinker A, Valentin JP, Varro A, Wallman M, Zhou X (2016) Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop. Europace 18(9):1287–1298. https://doi.org/10.1093/europace/euv320

    Article  PubMed  Google Scholar 

  38. Hoekstra M, Mummery CL, Wilde AA, Bezzina CR, Verkerk AO (2012) Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 3:346. https://doi.org/10.3389/fphys.2012.00346

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yang PC, Kurokawa J, Furukawa T, Clancy CE (2010) Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study. PLoS Comput Biol 6(1):e1000658. https://doi.org/10.1371/journal.pcbi.1000658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mayourian J, Savizky RM, Sobie EA, Costa KD (2016) Modeling electrophysiological coupling and fusion between human Mesenchymal stem cells and Cardiomyocytes. PLoS Comput Biol 12(7):e1005014. https://doi.org/10.1371/journal.pcbi.1005014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NHLBI 1F30HL134283-01A1 (JM) and NIH/NHLBI R01HL132226 (KDC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mayourian, J., Sobie, E.A., Costa, K.D. (2018). An Introduction to Computational Modeling of Cardiac Electrophysiology and Arrhythmogenicity. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics