Skip to main content

The Sugen 5416/Hypoxia Mouse Model of Pulmonary Arterial Hypertension

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

Pulmonary hypertension is a rapidly progressive, life-threatening, and often fatal disease. Despite many new developments in pulmonary arterial hypertension (PAH) therapy, there is currently no cure for PAH, and new therapies are desperately needed. PAH pathobiology involves a remodeling process in pulmonary arteries that plays a critical role in elevating pulmonary arterial and right ventricle pressures. The discovery and development of new therapies requires animal models of PAH that mimic the human disease, including vascular remodeling.

Here we review and describe a detailed protocol for creating an in vivo model of Sugen/Hypoxia-induced PAH in mice that is commonly used to assess the efficiency of new therapies in PAH. Severe pulmonary hypertension can be established in 1 month using this protocol. Additional protocols to evaluate the model by invasive pressure measurements and histology are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Galiè N, Humbert M, Vachiery J-L et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119

    Article  Google Scholar 

  2. Humbert M, Sitbon O, Simonneau G (2004) Treatment of pulmonary arterial hypertension. N Engl J Med 351:1425–1436

    Article  CAS  PubMed  Google Scholar 

  3. Wilcox SR, Kabrhel C, Channick RN (2015) Pulmonary hypertension and right ventricular failure in emergency medicine. Ann Emerg Med 66:619–628

    Article  PubMed  Google Scholar 

  4. Simon MA, Pinsky MR (2011) Right ventricular dysfunction and failure in chronic pressure overload. Cardiol Res Pract 2011:568095

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dorfmüller P (2013) Pulmonary hypertension: pathology. Handb Exp Pharmacol 218:59–75

    Article  PubMed  Google Scholar 

  6. Guignabert C, Dorfmüller P (2017) Pathology and pathobiology of pulmonary hypertension. Semin Respir Crit Care Med 38:571–584

    Article  PubMed  Google Scholar 

  7. Huertas A, Perros F, Tu L et al (2014) Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: a complex interplay. Circulation 129:1332–1340

    Article  PubMed  Google Scholar 

  8. Herve P, Humbert M, Sitbon O et al (2001) Pathobiology of pulmonary hypertension: the role of platelets and thrombosis. Clin Chest Med 22:451–458

    Article  CAS  PubMed  Google Scholar 

  9. Jonigk D, Golpon H, Bockmeyer CL et al (2011) Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. Am J Pathol 179:167–179

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pietra GG, Edwards WD, Kay JM et al (1989) Histopathology of primary pulmonary hypertension. A qualitative and quantitative study of pulmonary blood vessels from 58 patients in the National Heart, Lung, and Blood Institute, Primary Pulmonary Hypertension Registry. Circulation 80:1198–1206

    Article  CAS  PubMed  Google Scholar 

  11. Rubin LJ (1997) Primary pulmonary hypertension. N Engl J Med 336:111–117

    Article  CAS  PubMed  Google Scholar 

  12. Voelkel NF, Tuder RM (2000) Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J Clin Investig 106:733–738

    Article  CAS  PubMed  Google Scholar 

  13. Stenmark KR, Meyrick B, Galiè N et al (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Phys Lung Cell Mol Phys 297:L1013–L1032

    CAS  Google Scholar 

  14. Bauer NR, Moore TM, McMurtry IF (2007) Rodent models of PAH: are we there yet? Am J Phys Lung Cell Mol Phys 293:L580–L582

    CAS  Google Scholar 

  15. Taraseviciene-Stewart L, Kasahara Y, Alger L et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  CAS  PubMed  Google Scholar 

  16. Abe K, Toba M, Alzoubi A et al (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754

    Article  PubMed  Google Scholar 

  17. Ciuclan L, Bonneau O, Hussey M et al (2011) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184:1171–1182

    Article  CAS  PubMed  Google Scholar 

  18. Vitali SH, Hansmann G, Rose C et al (2014) The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up. Pulm Circ 4:619–629

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sakao S, Tatsumi K (2011) The effects of antiangiogenic compound SU5416 in a rat model of pulmonary arterial hypertension. Respiration 81:253–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association (AHA-17SDG33370112) to Y.S., from the National Institutes of Health R01HL133554 to L.H, and from the R01 HL117505, HL 119046, HL129814, 128072, HL131404, R01HL135093, a P50 HL112324, and two Transatlantic Fondation Leducq grants to R.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Sassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bueno-Beti, C., Hadri, L., Hajjar, R.J., Sassi, Y. (2018). The Sugen 5416/Hypoxia Mouse Model of Pulmonary Arterial Hypertension. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics