Skip to main content

Bacterial Endophytes in Plant Tissue Culture: Mode of Action, Detection, and Control

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Endophytic bacteria have been increasingly in the focus of research projects during the last decade. This has changed the view on bacteria in plant tissue culture and led to the differentiation between artificially introduced contaminations and naturally occurring endophytes with neutral, negative, or positive impact on the plant propagation process. This review chapter gives an overview on recent findings about the impact that bacteria have on the plant physiology in general and during micropropagation. Additionally, methods for the detection and identification of bacteria in plant tissue are described and, finally, suggestions of how to deal with bacterial endophytes in in vitro culture are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hardoim PR, van Overbeek LS, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  3. De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Handb der Physiol Bot 2:335

    Google Scholar 

  4. Carroll GC (1986) Biology of endophytism in plants with particular reference to woody perennials. In: Fokkema N, J van den Heuvel (eds) Microbiol. Phyllosph. Cambridge University Press, pp 205–222

    Google Scholar 

  5. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microb. Ecol. leaves. Springer, New York, pp 179–197. https://doi.org/10.1007/978-1-4612-3168-4_9

    Chapter  Google Scholar 

  6. Koskimäki JJ, Pirttilä M, Ihantola E-L et al (2015) The intracellular scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates round the host nucleus and encodes eucaryote-like proteins. MBio 6:e00039–e00015. https://doi.org/10.1128/mBio.00039-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117. https://doi.org/10.1264/jsme2.23.109

    Article  PubMed  Google Scholar 

  8. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396. https://doi.org/10.1371/journal.pone.0020396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Glassner H, Zchori-Fein E, Yaron S et al (2017) Bacterial niches inside seeds of Cucumis melo L. Plant Soil 422:1–13. https://doi.org/10.1007/s11104-017-3175-3

    Article  CAS  Google Scholar 

  10. Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. https://doi.org/10.1146/annurev-genet-110410-132549

    Article  PubMed  CAS  Google Scholar 

  11. Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  12. Yanni YG, Rizk RY, El-Fattah FKA et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. Trifolii with rice roots. Funct Plant Biol 28:845–870

    Article  CAS  Google Scholar 

  13. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. https://doi.org/10.1016/j.pbi.2011.04.004

    Article  PubMed  Google Scholar 

  14. Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077. https://doi.org/10.1128/AEM.66.7.3073-3077.2000

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kukkurainen S, Leino A, Vähämiko S et al (2004) Occurrence and location of endophytic bacteria in garden and wild strawberry. Hortscience 39:1–5

    Google Scholar 

  16. Compant S, Kaplan H, Sessitsch A et al (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93. https://doi.org/10.1111/j.1574-6941.2007.00410.x

    Article  PubMed  CAS  Google Scholar 

  17. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9. https://doi.org/10.2307/1943154

    Article  Google Scholar 

  18. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  PubMed  CAS  Google Scholar 

  19. Promputtha I, Lumyong S, Dhanasekaran V et al (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590. https://doi.org/10.1007/s00248-006-9117-x

    Article  PubMed  Google Scholar 

  20. Kozyrovska N (2013) Crosstalk between endophytes and a plant host within information processing networks. Biopolym Cell 29:234–243

    Article  CAS  Google Scholar 

  21. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. https://doi.org/10.1006/jtbi.1997.0532

    Article  PubMed  CAS  Google Scholar 

  22. Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150. https://doi.org/10.1094/MPMI-06-11-0179

    Article  PubMed  CAS  Google Scholar 

  24. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Article  PubMed  CAS  Google Scholar 

  25. Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth heal. promot. bact. Springer-Verlag, Heidelberg, pp 45–79. https://doi.org/10.1007/978-3-642-13612-2_3

    Chapter  Google Scholar 

  26. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

    Article  PubMed  CAS  Google Scholar 

  27. Tsavkelova EA, Cherdyntseva TA, Netrusov AI (2005) Auxin production by bacteria associated with orchid roots. Microbiology 74:46–53. https://doi.org/10.1007/s11021-005-0027-6

    Article  CAS  Google Scholar 

  28. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547. https://doi.org/10.1111/j.1472-765X.2009.02565.x

    Article  PubMed  CAS  Google Scholar 

  29. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702. https://doi.org/10.1371/journal.pone.0002702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18. https://doi.org/10.3109/10408419509113531

    Article  PubMed  Google Scholar 

  31. Salomon MV, Bottini R, de Souza Filho GA et al (2013) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374. https://doi.org/10.1111/ppl.12117

    Article  PubMed  CAS  Google Scholar 

  32. Belimov AA, Dodd IC, Safronova VI et al (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91. https://doi.org/10.1016/j.plaphy.2013.10.032

    Article  PubMed  CAS  Google Scholar 

  33. Wang XM, Yang B, Ren CG et al (2015) Involvement of abscisic acid and salicylic acid in signal cascade regulating bacterial endophyte-induced volatile oil biosynthesis in plantlets of Atractylodes lancea. Physiol Plant 153:30–42. https://doi.org/10.1111/ppl.12236

    Article  PubMed  CAS  Google Scholar 

  34. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144. https://doi.org/10.1111/j.1365-2672.2012.05409.x

    Article  PubMed  CAS  Google Scholar 

  35. Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–355

    Article  Google Scholar 

  36. Faleiro AC, Pereira TP, Espindula E et al (2013) Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis 61:125–133. https://doi.org/10.1007/s13199-013-0262-y

    Article  CAS  Google Scholar 

  37. Herman EB (1990) Non-axenic plant tissue culture: possibilities and opportunities. Acta Hortic 280:233–238. https://doi.org/10.17660/ActaHortic.1990.280.40

    Article  Google Scholar 

  38. Marino G, Altan AD, Biavati B (1996) The effect of bacterial contamination on the growth and gas evolution of in vitro cultured apricot shoots. In Vitro Cell Dev Biol Plant 32:51–56. https://doi.org/10.1007/BF02823014

    Article  Google Scholar 

  39. Leifert C, Ritchie J, Waites W (1991) Contaminants of plant-tissue and cell cultures. World J Microbiol Biotechnol 7:452–469. https://doi.org/10.1007/BF00303371

    Article  PubMed  CAS  Google Scholar 

  40. Liu T-H a, Hsu N-W, Wu R-Y (2005) Control of leaf-tip necrosis of micropropagated ornamental statice by elimination of endophytic bacteria. In Vitro Cell Dev Biol Plant 41:546–549. https://doi.org/10.1079/IVP2005673

    Article  Google Scholar 

  41. Leifert C, Cassells A (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 37:133–138. https://doi.org/10.1079/IVP2000129

    Article  Google Scholar 

  42. Orlikowska T, Nowak K, Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Org 128:487–508. https://doi.org/10.1007/s11240-016-1144-9

    Article  CAS  Google Scholar 

  43. Thomas P, Swarna GK, Roy PK, Patil P (2008) Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv. Grand Naine. Plant Cell Tissue Org 93:55–63. https://doi.org/10.1007/s11240-008-9341-9

    Article  Google Scholar 

  44. Dias ACF, Costa FEC, Andreote FD et al (2008) Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol 25:189–195. https://doi.org/10.1007/s11274-008-9878-0

    Article  CAS  Google Scholar 

  45. Abreu-Tarazi MF, Navarrete AA, Andreote FD et al (2010) Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR-DGGE. World J Microbiol Biotechnol 26:555–560. https://doi.org/10.1007/s11274-009-0191-3

    Article  Google Scholar 

  46. Lucero ME, Unc A, Cooke P et al (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS One 6:e17693. https://doi.org/10.1371/journal.pone.0017693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jimtha JC, Smitha PV, Anisha C et al (2014) Isolation of endophytic bacteria from embryogenic suspension culture of banana and assessment of their plant growth promoting properties. Plant Cell Tissue Org 118:57–66. https://doi.org/10.1007/s11240-014-0461-0

    Article  Google Scholar 

  48. Izumi H, Anderson IC, Killham K, Moore ERB (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179. https://doi.org/10.1139/W07-134

    Article  PubMed  CAS  Google Scholar 

  49. Ulrich K, Stauber T, Ewald D (2008) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Org 93:347–351. https://doi.org/10.1007/s11240-008-9367-z

    Article  Google Scholar 

  50. Zaspel I, Ulrich A, Boine B, Stauber T (2008) Occurrence of culturable bacteria living in micropropagated black locust cultures (Robinia pseudoacacia L.). Eur J Hortic Sci 73:231–235

    Google Scholar 

  51. Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact 22:1032–1037. https://doi.org/10.1094/MPMI-22-8-1032

    Article  PubMed  CAS  Google Scholar 

  52. Donnarumma F, Capuana M, Vettori C et al (2011) Isolation and characterisation of bacterial colonies from seeds and in vitro cultures of Fraxinus spp. from Italian sites. Plant Biol 13:169–176. https://doi.org/10.1111/j.1438-8677.2010.00334.x

    Article  PubMed  CAS  Google Scholar 

  53. Pohjanen J, Koskimäki JJ, Sutela S et al (2014) Interaction with ectomycorrhizal fungi and endophytic methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiol 34:993–1005. https://doi.org/10.1093/treephys/tpu062

    Article  PubMed  Google Scholar 

  54. Quambusch M, Brümmer J, Haller K et al (2016) Dynamics of endophytic bacteria in plant in vitro culture: quantification of three bacterial strains in Prunus avium in different plant organs and in vitro culture phases. Plant Cell Tissue Org 126:305–317. https://doi.org/10.1007/s11240-016-0999-0

    Article  Google Scholar 

  55. Quambusch M, Pirttilä AM, Tejesvi MV et al (2014) Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiol 34:524–533. https://doi.org/10.1093/treephys/tpu027

    Article  PubMed  CAS  Google Scholar 

  56. Pirttilä AM, Podolich O, Koskimäki JJ et al (2008) Role of origin and endophyte infection in browning of bud-derived tissue cultures of scots pine (Pinus sylvestris L.). Plant Cell Tissue Org 95:47–55. https://doi.org/10.1007/s11240-008-9413-x

    Article  CAS  Google Scholar 

  57. Ardanov P, Sessitsch A, Häggman H et al (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:e46802. https://doi.org/10.1371/journal.pone.0046802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tsavkelova EA, Egorova MA, Leontieva MR et al (2016) Dendrobium nobile Lindl. Seed germination in co-cultures with diverse associated bacteria. Plant Growth Regul 80:79–91. https://doi.org/10.1007/s10725-016-0155-1

    Article  CAS  Google Scholar 

  59. Wang X, Yam TW, Meng Q et al (2016) The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell Tissue Org 126:523–531. https://doi.org/10.1007/s11240-016-1021-6

    Article  CAS  Google Scholar 

  60. Kulkarni AA, Kelkar SM, Watve MG, Krishnamurthy KV (2007) Characterization and control of endophytic bacterial contaminants in in vitro cultures of Piper spp., Taxus baccata subsp. wallichiana, and Withania somnifera. Can J Microbiol 53:63–74. https://doi.org/10.1139/w06-106

    Article  PubMed  CAS  Google Scholar 

  61. Cassells AC, Harmey MA, Carney BF et al (1988) Problems posed by culturable bacterial endophytes in the establishment of axenic cultures of Pelargonium domesticum: the use of Xanthomonas pelargonii-specific ELISA, DNA probes and culture indexing in the screening of antibiotic treated and untreated donor plants. Acta Hortic 225:153–161. https://doi.org/10.17660/ActaHortic.1988.225.16

    Article  Google Scholar 

  62. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  63. Keller ERJ, Blattner FR, Fritsch R et al (2012) The genus Allium in the Gatersleben plant collections - progress in germplasm preservation, characterization and phylogenetic analysis. In: Acta Hortic. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 273–287. https://doi.org/10.17660/ActaHortic.2012.969.36

    Chapter  Google Scholar 

  64. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309:1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x

    Article  PubMed  CAS  Google Scholar 

  65. Aoi Y, Kinoshita T, Hata T et al (2009) Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol 75:3826–3833. https://doi.org/10.1128/AEM.02542-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang D, Berry JP, Zhu D et al (2015) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614. https://doi.org/10.1038/ismej.2014.161

    Article  PubMed  CAS  Google Scholar 

  67. Eevers N, Gielen M, Sánchez-López A et al (2015) Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb Biotechnol 8:707–715. https://doi.org/10.1111/1751-7915.12291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Middlebrook G, Cohn ML (1958) Bacteriology of tuberculosis: laboratory methods. AJPH 48:844–853

    CAS  Google Scholar 

  69. Van Overbeek LS, Van Vuurde J, Van Elsas JD (2006) Application of molecular fingerprinting techniques to explore the diversity of bacterial endophytic communities. Microb Root Endophytes 9:337–354. https://doi.org/10.1007/3-540-33526-9_19

    Article  Google Scholar 

  70. Smalla K, Oros-Sichler M, Milling A et al (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479. https://doi.org/10.1016/j.mimet.2007.02.014

    Article  PubMed  CAS  Google Scholar 

  71. Shen SY, Fulthorpe R (2015) Seasonal variation of bacterial endophytes in urban trees. Front Microbiol 6:1–13. https://doi.org/10.3389/fmicb.2015.00427

    Article  Google Scholar 

  72. Garbeva P, Van Overbeek LS, van Vuurde JWL et al (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383. https://doi.org/10.1007/s002480000096

    Article  PubMed  CAS  Google Scholar 

  73. Weinert N, Meincke R, Gottwald C et al (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75:3859–3865. https://doi.org/10.1128/AEM.00414-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Videira SS, Pereira e Silva MDC, Souza Galisa P et al (2013) Culture-independent molecular approaches reveal a mostly unknown high diversity of active nitrogen-fixing bacteria associated with Pennisetum purpureum—a bioenergy crop. Plant Soil 373:737–754. https://doi.org/10.1007/s11104-013-1828-4

    Article  CAS  Google Scholar 

  75. Marques JM, da Silva TF, Vollu RE et al (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88:424–435. https://doi.org/10.1111/1574-6941.12313

    Article  PubMed  CAS  Google Scholar 

  76. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  77. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216. https://doi.org/10.3389/fpls.2014.00216

    Article  PubMed  PubMed Central  Google Scholar 

  78. Van Tongeren SP, Degener JE, Harmsen HJM (2011) Comparison of three rapid and easy bacterial DNA extraction methods for use with quantitative real-time PCR. Eur J Clin Microbiol Infect Dis 30:1053–1061. https://doi.org/10.1007/s10096-011-1191-4

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rantakokko-Jalava K, Jalava J (2002) Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J Clin Microbiol 40:4211–4217. https://doi.org/10.1128/JCM.40.11.4211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Maropola MKA, Ramond JB, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117. https://doi.org/10.1016/j.mimet.2015.03.012

    Article  PubMed  CAS  Google Scholar 

  81. Clarridge JE (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862. https://doi.org/10.1128/CMR.17.4.840

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Woo PCY, Lau SKP, Teng JLL et al (2008) Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14:908–934. https://doi.org/10.1111/j.1469-0691.2008.02070.x

    Article  PubMed  CAS  Google Scholar 

  83. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. https://doi.org/10.1093/nar/gkt1244

    Article  PubMed  CAS  Google Scholar 

  84. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  85. Nesme X, Normand P (2004) Easy individual community typing by rDNA ITS1 analysis. In: Kowalchuk GA, de Bruijn FJ, Head IM et al Mol. Microb. Ecol. Man., 2nd ed. Kluwer Academic Publishers, Dordrecht, pp 671–688

    Google Scholar 

  86. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. https://doi.org/10.1007/s002480000087

    Article  PubMed  CAS  Google Scholar 

  88. Rasche F, Velvis H, Zachow C et al (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566. https://doi.org/10.1111/j.1365-2664.2006.01169.x

    Article  CAS  Google Scholar 

  89. Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424. https://doi.org/10.1007/s00248-007-9287-1

    Article  PubMed  CAS  Google Scholar 

  90. Rasche F, Trondl R, Naglreiter C et al (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045. https://doi.org/10.1139/w06-059

    Article  PubMed  CAS  Google Scholar 

  91. Arenz BE, Schlatter DC, Bradeen JM, Kinkel LL (2015) Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities. J Microbiol Methods 117:1–3. https://doi.org/10.1016/j.mimet.2015.07.003

    Article  PubMed  CAS  Google Scholar 

  92. Ruppel S, Rühlmann J, Merbach W (2006) Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286:21–35. https://doi.org/10.1007/s11104-006-9023-5

    Article  CAS  Google Scholar 

  93. Andreote F, Azevedo J, Araújo W (2009) Assessing the diversity of bacterial communities associated with plants. Braz J Microbiol 40:417–432. https://doi.org/10.1590/S1517-83822009000300001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lacava PT, Li WB, Araújo WL et al (2006) Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants. J Microbiol Methods 65:535–541. https://doi.org/10.1016/j.mimet.2005.09.015

    Article  PubMed  CAS  Google Scholar 

  95. Peralta KD, Araya T, Valenzuela S et al (2012) Production of phytohormones, siderophores and population fluctuation of two root-promoting rhizobacteria in Eucalyptus globulus cuttings. World J Microbiol Biotechnol 28:2003–2014. https://doi.org/10.1007/s11274-012-1003-8

    Article  PubMed  CAS  Google Scholar 

  96. Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42:339–366. https://doi.org/10.1146/annurev.phyto.42.040803.140329

    Article  PubMed  CAS  Google Scholar 

  97. Lo Piccolo S, Ferraro V, Alfonzo A et al (2010) Presence of endophytic bacteria in Vitis vinifera leaves as detected by fluorescence in situ hybridization. Ann Microbiol 60:161–167. https://doi.org/10.1007/s13213-010-0023-6

    Article  CAS  Google Scholar 

  98. Cardinale M, Grube M, Erlacher A et al (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 17:239–252. https://doi.org/10.1111/1462-2920.12686

    Article  PubMed  CAS  Google Scholar 

  99. Armanhi JSL, de Souza RSC, de Araujo LM et al (2016) Multiplex amplicon sequencing for microbe identification in community- based culture collections. Sci Rep 6:1–9. https://doi.org/10.1038/srep29543

    Article  CAS  Google Scholar 

  100. van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:1–9. https://doi.org/10.1371/journal.pbio.1002378

    Article  CAS  Google Scholar 

  101. Mbah EI, Wakil SM (2012) Elimination of bacteria from in vitro yam tissue cultures using antibiotics. J Plant Pathol 94:53–58. https://doi.org/10.4454/jpp.fa.2012.023

    Article  Google Scholar 

  102. Fang JY, Hsu YR (2012) Molecular identification and antibiotic control of endophytic bacterial contaminants from micropropagated Aglaonema cultures. Plant Cell Tissue Org 110:53–62. https://doi.org/10.1007/s11240-012-0129-6

    Article  CAS  Google Scholar 

  103. Miyazaki J, Tan BH, Errington SG (2010) Eradication of endophytic bacteria via treatment for axillary buds of Petunia hybrida using plant preservative mixture (PPMTM). Plant Cell Tissue Org 102:365–372. https://doi.org/10.1007/s11240-010-9741-5

    Article  CAS  Google Scholar 

  104. George MW, Tripepi RR (2001) Plant preservative MixtureTM can affect shoot regeneration from leaf explants of chrysanthemum, European birch, and rhododendron. Hortscience 36:768–769

    Google Scholar 

  105. Bartsch M, Mahnkopp F, Winkelmann T (2014) In vitro propagation of Dionaea muscipula Ellis. Prop Ornam Plants 14:117–124

    Google Scholar 

  106. Luna C, Acevedo R, Collavino M et al (2013) Endophytic bacteria from Ilex paraguariensis shoot cultures: localization, characterization, and response to isothiazolone biocides. In Vitro Cell Dev Biol Plant 49:326–332. https://doi.org/10.1007/s11627-013-9500-5

    Article  CAS  Google Scholar 

  107. Marino BG, Gaggìa F (2015) Antimicrobial activity of Melia azedarach fruit extracts for control of bacteria in inoculated in-vitro shoots of “MRS 2/5” plum hybrid and calla lily and extract influence on the shoot cultures. Eur J Plant Pathol 141:505–521. https://doi.org/10.1007/s10658-014-0559-6

    Article  CAS  Google Scholar 

  108. Boine B, Naujoks G, Stauber T (2008) Investigations on influencing plant-associated bacteria in tissue cultures of black locust (Robinia pseudoacacia L.). Plant Cell Tissue Org 94:219–223. https://doi.org/10.1007/s11240-008-9395-8

    Article  CAS  Google Scholar 

  109. Matyjaszczyk E (2015) Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Manag Sci 71:1201–1206. https://doi.org/10.1002/ps.3986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Quambusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Quambusch, M., Winkelmann, T. (2018). Bacterial Endophytes in Plant Tissue Culture: Mode of Action, Detection, and Control. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics