Skip to main content

Elaboration of Transcriptome During the Induction of Somatic Embryogenesis

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Somatic embryogenesis (SE) is one of the most studied developmental processes due to its applications, such as plant micropropagation, transformation, and germplasm conservation. The use of massive techniques of sequencing, as well as the use of subtractive hybridization and macroarrays, has led to the identification of hundreds of genes involved in the SE process. These have been important developments to study the molecular aspects of the progress of SE. With the advent of the new massive techniques for sequencing RNA, it has been possible to see a more complete picture of whole processes. In this chapter we present a technique to handle the elaboration of the transcriptome from the extraction of RNA until the assembly of the complete transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anis M, Ahmad N (2016) Plant tissue culture: a journey from research to commercialization. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 3–13. https://doi.org/10.1007/978-981-10-1917-3_1

    Chapter  Google Scholar 

  2. Martinez-Montero ME, Gonzalez-Arnao MT, Engelmann F (2012) Cryopreservation of tropical plant germplasm with vegetative propagation – review of sugarcane (Saccharum spp.) and pineapple (Ananas comusus (L.) Merrill) cases. In: Katkov II (ed) Current frontiers in cryobiology. InTech, Rijeka, Croatia, pp 359–396. https://doi.org/10.5772/32047

    Chapter  Google Scholar 

  3. Ahmad MM, Ali A, Siddiqui S et al (2017) Methods in transgenic technology. In: Abdin MZ, Kiran U, Kamaluddin M et al (eds) Plant biotechnology: principles and applications. Springer, Singapore, pp 93–115. https://doi.org/10.1007/978-981-10-2961-5_4

    Chapter  Google Scholar 

  4. Loyola-Vargas VM, Vázquez-Flota FA (2006) An introduction to plant cell culture: back to the future. In: Loyola-Vargas VM, Vázquez-Flota FA (eds) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 1–8

    Google Scholar 

  5. Loyola-Vargas VM, Ochoa-Alejo N (2012) An introduction to plant cell culture: the future ahead. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, methods in molecular biology, vol 877. Humana Press, Heidelberg, pp 1–8. https://doi.org/10.1007/978-1-61779-818-4_1

    Chapter  Google Scholar 

  6. Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. An overview. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis. Fundamental aspects and applications. Springer, Switzerland, pp 1–10. https://doi.org/10.1007/978-3-319-33705-0_1

    Chapter  Google Scholar 

  7. Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. Fundamental aspects and applications. Springer, Switzerland. https://doi.org/10.1007/978-3-319-33705-0

    Book  Google Scholar 

  8. Loyola-Vargas VM (2016) The history of somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis. Fundamental aspects and applications. Springer, Switzerland, pp 11–22. https://doi.org/10.1007/978-3-319-33705-0_2

    Chapter  Google Scholar 

  9. Etienne H, Bertrand B, Georget F et al (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653. https://doi.org/10.1093/treephys/tpt034

    Article  PubMed  CAS  Google Scholar 

  10. Jin F, Hu L, Yuan D et al (2014) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol J 12:161–173. https://doi.org/10.1111/pbi.12123

    Article  PubMed  CAS  Google Scholar 

  11. Giroux RW, Pauls KP (1997) Characterization of somatic embryogenesis-related cDNAs from alfalfa (Medicago sativa L). Plant Mol Biol 33:393–404. https://doi.org/10.1023/A:1005786826672

    Article  PubMed  CAS  Google Scholar 

  12. Lin HC, Morcillo F, Dussert S et al (2009) Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 70:173–192. https://doi.org/10.1007/s11103-009-9464-3

    Article  PubMed  CAS  Google Scholar 

  13. Zeng F, Zhang X, Zhu L et al (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183. https://doi.org/10.1007/s11103-005-3381-x

    Article  PubMed  CAS  Google Scholar 

  14. Yang X, Zhang X, Yuan D et al (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:11010. https://doi.org/10.1186/1471-2229-12-110

    Article  CAS  Google Scholar 

  15. Xu Z, Zhang C, Zhang X et al (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Int Plant Biol 55:631–642. https://doi.org/10.1111/jipb.12073

    Article  CAS  Google Scholar 

  16. Elbl P, Lira BS, Andrade SCS et al (2015) Comparative transcriptome analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bertol.) Kuntze. Plant Cell Tiss Org 120:903–915. https://doi.org/10.1007/s11240-014-0523-3

    Article  CAS  Google Scholar 

  17. Lai Z, Lin Y (2013) Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing. BMC Genomics 14:56110. https://doi.org/10.1186/1471-2164-14-561

    Article  CAS  Google Scholar 

  18. Salvo SAGD, Hirsch CN, Buell CR et al (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9:e11140710. https://doi.org/10.1371/journal.pone.0111407

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhang S, Han S et al (2012) Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep 31:1637–1657. https://doi.org/10.1007/s00299-012-1277-1

    Article  PubMed  CAS  Google Scholar 

  20. Rajesh MK, Fayas TP, Naganeeswaran S et al (2015) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253:913–928. https://doi.org/10.1007/s00709-015-0856-8

    Article  PubMed  CAS  Google Scholar 

  21. Shi X, Zhang C, Liu Q et al (2016) De novo comparative transcriptome analysis provides new insights into sucrose induced somatic embryogenesis in camphor tree (Cinnamomum camphora L.). BMC Genomics 17:2610. https://doi.org/10.1186/s12864-015-2357-8

    Article  CAS  Google Scholar 

  22. Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:10. https://doi.org/10.3835/plantgenome2013.03.0001in

    Article  Google Scholar 

  23. Veeckman E, Ruttink T, Vandepoele K (2016) Are we there yet? Reliably estimating the completeness of plant genome sequences. Plant Cell 28:1759–1768. https://doi.org/10.1105/tpc.16.00349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  25. Quiroz-Figueroa FR, Monforte-González M, Galaz-Ávalos RM et al (2006) Direct somatic embryogenesis in Coffea canephora. In: Loyola-Vargas VM, Vázquez-Flota FA (eds) Plant cell culture protocols. Humana Press, Totowa, NJ, pp 111–117. https://doi.org/10.1385/1-59259-959-1:111

    Chapter  Google Scholar 

  26. Sims D, Sudbery I, Ilott NE et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132. https://doi.org/10.1038/nrg3642

    Article  PubMed  CAS  Google Scholar 

  27. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    Article  PubMed  CAS  Google Scholar 

  28. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schulz MH, Zerbino DR, Vingron M et al (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092. https://doi.org/10.1093/bioinformatics/bts094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Andrews S, A FastQC (2015) A quality control tool for high throughput sequence data. 2010. Google Scholar. www.bioinformatics.babraham.ac.uk/projects/fastqc

  31. Ewing B, Hillier L, Wendl MC et al (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185. https://doi.org/10.1101/gr.8.3.175

    Article  PubMed  CAS  Google Scholar 

  32. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17:10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  33. Compeau PEC, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29:987–991. https://doi.org/10.1038/nbt.2023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682. https://doi.org/10.1038/nrg3068

    Article  PubMed  CAS  Google Scholar 

  35. Garber M, Grabherr MG, Guttman M et al (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Meth 8:469–477. https://doi.org/10.1038/nmeth.1613

    Article  CAS  Google Scholar 

  36. Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Nat Prot 8:1494–1512. https://doi.org/10.1038/nprot.2013.084

    Article  CAS  Google Scholar 

  37. NCBI RC (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44:D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  38. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu CH, Apweiler R, Bairoch A et al (2006) The universal protein resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191. https://doi.org/10.1093/nar/gkj161

    Article  PubMed  CAS  Google Scholar 

  40. Góngora-Castillo E, Fedewa G, Yeo Y et al (2012) Genomic approaches for interrogating the biochemistry of medicinal plant species. In: David AH (ed) Methods in enzymology, Natural product biosynthesis by microorganisms and plants, Part C, vol 517. Academic Press, Boston, pp 139–159. https://doi.org/10.1016/B978-0-12-404634-4.00007-3

    Chapter  Google Scholar 

  41. Góngora-Castillo E, Buell CR (2013) Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. Nat Prod Rep 30:490–500. https://doi.org/10.1039/C3NP20099J

    Article  PubMed  Google Scholar 

  42. Li B, Fillmore N, Bai Y et al (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15:553. https://doi.org/10.1186/s13059-014-0553-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Honaas LA, Wafula EK, Wickett NJ et al (2016) Selecting superior de novo transcriptome assemblies: lessons learned by leveraging the best plant genome. PLoS One 11:e0146062. https://doi.org/10.1371/journal.pone.0146062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Smith-Unna R, Boursnell C, Patro R et al (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144. https://doi.org/10.1101/gr.196469.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Meth 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  Google Scholar 

  46. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  48. UniProt Consortium (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–D195. https://doi.org/10.1093/nar/gkm895

    Article  CAS  Google Scholar 

  49. Suzek BE, Huang H, McGarvey P et al (2007) UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–1288. https://doi.org/10.1093/bioinformatics/btm098

    Article  PubMed  CAS  Google Scholar 

  50. Fuentes-Cerda CFJ, Monforte-González M, Méndez-Zeel M et al (2001) Modification of the embryogenic response of Coffea arabica by nitrogen source. Biotechnol Lett 23:1341–1343. https://doi.org/10.1023/A:1010545818671

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work from VMLV laboratory was supported by a grant received from the National Council for Science and Technology (CONACyT, 1515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Góngora-Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Góngora-Castillo, E., Nic-Can, G.I., Galaz-Ávalos, R.M., Loyola-Vargas, V.M. (2018). Elaboration of Transcriptome During the Induction of Somatic Embryogenesis. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics