Skip to main content

Measuring Single-Molecule Twist and Torque in Multiplexed Magnetic Tweezers

  • Protocol
  • First Online:
Book cover Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Magnetic tweezers permit application of precisely calibrated stretching forces to nucleic acid molecules tethered between a surface and superparamagnetic beads. In addition, magnetic tweezers can control the tethers’ twist. Here, we focus on recent extensions of the technique that expand the capabilities of conventional magnetic tweezers by enabling direct measurements of single-molecule torque and twist. Magnetic torque tweezers (MTT) still control the DNA or RNA tether’s twist, but directly measure molecular torque by monitoring changes in the equilibrium rotation angle upon overwinding and underwinding of the tether. In freely orbiting magnetic tweezers (FOMT), one end of the tether is allowed to rotate freely, while still applying stretching forces and monitoring rotation angle. Both MTT and FOMT have provided unique insights into the mechanical properties, structural transitions, and interactions of DNA and RNA. Here, we provide step-by-step protocols to carry out FOMT and MTT measurements. In particular, we focus on multiplexed measurements, i.e., measurements that record data for multiple nucleic acid tethers at the same time, to improve statistics and to facilitate the observation of rare events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bryant Z, Oberstrass FC, Basu A (2012) Recent developments in single-molecule DNA mechanics. Curr Opin Struct Biol 22:304–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lipfert J, van Oene MM, Lee M, Pedaci F, Dekker NH (2015) Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 115:1449–1474

    Article  CAS  PubMed  Google Scholar 

  3. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Manosas M, Meglio A, Spiering MM, Ding F, Benkovic SJ, Barre F-X et al (2010) Magnetic tweezers for the study of DNA tracking motors. Methods Enzymol 475:297–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    Article  CAS  PubMed  Google Scholar 

  6. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. te Velthuis AJW, Kerssemakers JWJ, Lipfert J, Dekker NH (2010) Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J 99:1292–1302

    Article  CAS  Google Scholar 

  8. Lansdorp BM, Saleh OA (2012) Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Rev Sci Instrum 83:025115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Daldrop P, Brutzer H, Huhle A, Kauert DJ, Seidel R (2015) Extending the range for force calibration in magnetic tweezers. Biophys J 108:2550–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Strick TR, Allemand JF, Bensimon D, Croquette V (2000) Stress-induced structural transitions in DNA and proteins. Annu Rev Biophys Biomol Struct 29:523–543

    Article  CAS  PubMed  Google Scholar 

  11. Abels JA, Moreno-Herrero F, Van Der Heijden T, Dekker C, Dekker NH (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88:2737–2744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Herrero-Galán E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F et al (2013) Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 135:122–131

    Article  CAS  PubMed  Google Scholar 

  13. Lipfert J, Klijnhout S, Dekker NH (2010) Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Res 38:7122–7132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Salerno D, Brogioli D, Cassina V, Turchi D, Beretta GL, Seruggia D et al (2010) Magnetic tweezers measurements of the nanomechanical properties of DNA in the presence of drugs. Nucleic Acids Res 38:7089–7099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang Y, Schellenberg H, Walhorn V, Toensing K, Anselmetti D (2017) Binding mechanism of fluorescent dyes to DNA characterized by magnetic tweezers. Mater Today Proc 4:S218–S225

    Article  Google Scholar 

  16. Vilfan ID, Lipfert J, Koster DA, Lemay SG, Dekker NH (2009) Magnetic tweezers for single molecule measurements. Springer, New York, NY

    Google Scholar 

  17. Carrasco C, Dillingham MS, Moreno-Herrero F (2014) Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination. DNA Repair (Amst) 20:119–129

    Article  CAS  Google Scholar 

  18. Dulin D, Berghuis BA, Depken M, Dekker NH (2015) Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Curr Opin Struct Biol 34:116–122

    Article  CAS  PubMed  Google Scholar 

  19. Berghuis BA, Köber M, van Laar T, Dekker NH (2016) High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 105:90–98

    Article  CAS  PubMed  Google Scholar 

  20. Ordu O, Lusser A, Dekker NH (2016) Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 8:33–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B et al (2016) Single molecule studies of helicases with magnetic tweezers. Methods 105:3–15

    Article  CAS  PubMed  Google Scholar 

  22. Bryant Z, Stone MD, Gore J, Smith SB, Cozzarelli NR, Bustamante C (2003) Structural transitions and elasticity from torque measurements on DNA. Nature 424:338–341

    Article  CAS  PubMed  Google Scholar 

  23. Gore J, Bryant Z, Stone MD, Nöllmann M, Cozzarelli NR, Bustamante C (2006) Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439:100–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lebel P, Basu A, Oberstrass FC, Tretter EM, Bryant Z (2014) Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 11:456–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Oberstrass FC, Fernandes LE, Bryant Z (2012) Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc Natl Acad Sci U S A 109:6106–6111

    Article  PubMed Central  PubMed  Google Scholar 

  26. Vlijm R, Lee M, Lipfert J, Lusser A, Dekker C, Dekker NH (2015) Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of Tetrasomes. Cell Rep 10:216–225

    Article  CAS  PubMed  Google Scholar 

  27. Lipfert J, Wiggin M, Kerssemakers JWJ, Pedaci F, Dekker NH (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2:439–439

    Article  CAS  PubMed  Google Scholar 

  28. Lee M, Lipfert J, Sanchez H, Wyman C, Dekker NH (2013) Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament. Nucleic Acids Res 41:7023–7030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Harada Y, Ohara O, Takatsuki A, Itoh H, Shimamoto N, Kinosita K (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409:113–115

    Article  CAS  PubMed  Google Scholar 

  30. Basu A, Schoeffler AJ, Berger JM, Bryant Z (2012) ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA. Nat Struct Mol Biol 19:538–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Celedon A, Nodelman IM, Wildt B, Dewan R, Searson P, Wirtz D et al (2009) Magnetic tweezers measurement of single molecule torque. Nano Lett 9:1720–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Celedon A, Wirtz D, Sun S (2010) Torsional mechanics of DNA are regulated by small-molecule intercalation. J Phys Chem B 114:16929–16935

    Article  CAS  PubMed  Google Scholar 

  33. Lipfert J, Kerssemakers JWJ, Jager T, Dekker NH (2010) Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat Methods 7:977–980

    Article  CAS  PubMed  Google Scholar 

  34. Lipfert J, Kerssemakers JJW, Rojer M, Dekker NH (2011) A method to track rotational motion for use in single-molecule biophysics. Rev Sci Instrum 82:103707

    Article  CAS  PubMed  Google Scholar 

  35. Janssen XJA, Lipfert J, Jager T, Daudey R, Beekman J, Dekker NH (2012) Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. Nano Lett 12:3634–3639

    Article  CAS  PubMed  Google Scholar 

  36. Mosconi F, Allemand JF, Croquette V (2011) Soft magnetic tweezers: a proof of principle. Rev Sci Instrum 82:034302

    Article  CAS  PubMed  Google Scholar 

  37. Kauert DJ, Kurth T, Liedl T, Seidel R (2011) Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett 11:5558–5563

    Article  CAS  PubMed  Google Scholar 

  38. Lipfert J, Skinner GM, Keegstra JM, Hensgens T, Jager T, Dulin D et al (2014) Double-stranded RNA under force and torque: similarities to and striking differences from double-stranded DNA. Proc Natl Acad Sci U S A 111:15408–15413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lipfert J, Lee M, Ordu O, Kerssemakers JWJ, Dekker NH (2014) Magnetic tweezers for the measurement of twist and torque. J Vis Exp 19(87). https://doi.org/10.3791/51503

  40. van Oene MM, Dickinson LE, Pedaci F, Köber M, Dulin D, Lipfert J et al (2015) Biological magnetometry: torque on superparamagnetic beads in magnetic fields. Phys Rev Lett 114:218301. https://doi.org/10.1103/PhysRevLett.114.218301

    Article  PubMed  CAS  Google Scholar 

  41. van Oene MM, Dickinson LE, Cross B, Pedaci F, Lipfert J, Dekker NH (2017) Applying torque to the Escherichia coli flagellar motor using magnetic tweezers. Sci Rep 7:43285

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nord AL, Gachon E, Perez-Carrasco R, Nirody JA, Barducci A, Berry RM et al (2017) Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc Natl Acad Sci U S A 114:12952–12957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ribeck N, Saleh OA (2008) Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum 79:094301

    Article  CAS  PubMed  Google Scholar 

  44. De Vlaminck I, Henighan T, van Loenhout MTJ, Pfeiffer I, Huijts J, Kerssemakers JWJ et al (2011) Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett 11:5489–5493

    Article  CAS  PubMed  Google Scholar 

  45. Cnossen JP, Dulin D, Dekker NH (2014) An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev Sci Instrum 85:103712

    Article  CAS  PubMed  Google Scholar 

  46. Kriegel F, Ermann N, Forbes R, Dulin D, Dekker NH, Lipfert J (2017) Probing the salt dependence of the torsional stiffness of DNA by multiplexed magnetic torque tweezers. Nucleic Acids Res 45:5920–5929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nomidis SK, Kriegel F, Vanderlinden W, Lipfert J, Carlon E (2017) Twist-bend coupling and the torsional response of double-stranded DNA. Phys Rev Lett 118:217801

    Article  PubMed  Google Scholar 

  48. Dulin D, Vilfan ID, Berghuis BA, Hage S, Bamford DH, Poranen MM et al (2015) Elongation-competent pauses govern the Fidelity of a viral RNA-dependent RNA polymerase. Cell Rep 10:983–992

    Article  CAS  PubMed  Google Scholar 

  49. van Loenhout MTJ, Kerssemakers JWJ, De Vlaminck I, Dekker C (2012) Non-bias-limited tracking of spherical particles, enabling Nanometer resolution at low magnification. Biophys J 102:2362–2371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Lipfert J, Koster DA, Vilfan ID, Hage S, Dekker NH (2009) Single-molecule magnetic tweezers studies of type IB topoisomerases. Methods Mol Biol 582:71–89

    Article  CAS  PubMed  Google Scholar 

  51. Lipfert J, Hao X, Dekker NH (2009) Quantitative modeling and optimization of magnetic tweezers. Biophys J 96:5040–5049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. De Vlaminck I, Henighan T, van Loenhout MT, Burnham DR, Dekker C (2012) Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One 7:e41432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Klaue D, Seidel R (2009) Torsional stiffness of single Superparamagnetic microspheres in an external magnetic field. Phys Rev Lett 102:028302

    Article  CAS  PubMed  Google Scholar 

  54. Kriegel F, Ermann N, Lipfert J (2017) Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J Struct Biol 197:26–36

    Article  CAS  PubMed  Google Scholar 

  55. Mosconi F, Allemand JF, Bensimon D, Croquette V (2009) Measurement of the torque on a single stretched and twisted DNA using magnetic tweezers. Phys Rev Lett 102:078301

    Article  CAS  PubMed  Google Scholar 

  56. Sheinin MY, Forth S, Marko JF, Wang MD (2011) Underwound DNA under tension: structure, elasticity, and sequence-dependent Behaviors. Phys Rev Lett 107:108102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jelle van der Does for help with instrument development, Susanne Hage for help with development of the DNA construct, Philipp Walker for instrument construction and useful discussions, the Rief chair at the TU Munich for use of the laser cutter, and the German Research Foundation (DFG) via Sonderforschungbereich SFB 863 “Forces in Biomolecular Systems” for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lipfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kriegel, F., Vanderlinden, W., Nicolaus, T., Kardinal, A., Lipfert, J. (2018). Measuring Single-Molecule Twist and Torque in Multiplexed Magnetic Tweezers. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics